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Global description through a unique superspace model
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families of compounds.
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Flexible composition compounds

Flexible composition compounds are ...

Composition varies continuously or quasi-continuously in some
range.

Different members have different symmetry and unit cell
parameters.
In some cases, they can be unified in the Superspace
framework.
In most cases there is a relationship between the composition
parameter and the modulation parameters.
Modulations are described with crenel functions.
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Yamamoto and Nakazawa’s model

Yamamoto and Nakazawa’s paper
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Occupational probability

Occupational probability of Fe

This is what the electronic density looks like.

Very anharmonic modulation for the occupation of Fe.
Can it be replaced by a crenel function?

(Yamamoto, A., Nakazawa, H. Acta Cryst. 1982 A38 79–86)
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Pyrrhotites (Fe1−x S)

Main features of Pyrrhotites

Iron sulfide Fe1−xS 0 < x < 0.17

It has 2 crystal symmetries:

High in iron → Hexagonal
Low in iron → Monoclinic

Superstructures of NiAs
S - Hexagonal closed-packed.
Fe - Octahedral interstices.
Non-stoichiometry is due to Fe vacancies.
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Structural model

Unit cell

Fundamental structure (NiAs) (small unit cell)
Used unit cell (big unit cell)

(Kichiro, K., Morimoto, N., Gyobu, A. Acta Cryst. 1975 B31 2759–2764)
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Structural model

New model

From “Closeness condition” it holds:

γ = 2x = 1/N where N is supercell value

x1 x2 x3 x4 ∆

Fe 1/8 1/8 0 5/8 1− x
S 1/8 −1/24 3/4 − 1

Table: Independent Atomic Domains

Xddd(00γ)qq0
X = {{E |0000}, {E |1/2001/2}{E |01/201/2}{E |1/21/200}}
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Structural model

Superspace model for γ = 3/17 Fe31S34

S
Fe

x

γ = 2x
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Differences with Yamamoto and Nakazawa’s description

Differences in symmetry

Difference
New symmetry operation {I |0000}

Justifications

New extinction rule due to glide plane (d ⊥ z) fulfilled in the
dataset.
Fixed crenel centre.
3D structure symmetry groups correctly derived.
Refinement.
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Differences with Yamamoto and Nakazawa’s description

Back to 3D structures

Commensurate (γ = r/s) → Translational symmetry in 3D

Different cuts → 3D symmetry group
Depends on the parity of r and s

r even odd
s mod 4 1, 3 1, 3 0 2

general C1121 C1121 Fd11 F1d1
0 C1121/d C1121/d F2/d11 F12/d1
1/4s C2221 C2221 Fd2d F2dd

Table: 3D structure symmetry
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Refinement of N = 5.5

Refinement results

YN model New model
Rall Robs Rall Robs

All 10.4 15.9 12.5 17.9
Main 5.8 6.6 6.1 6.7
Satellite 1 12.7 19.8 14.6 17.4
Satellite 2 10.0 16.6 9.6 19.9
Satellite 3 22.0 35.0 31.6 44.4
Satellite 4 35.8 82.4 64.7 112.6
Ref. parameter 63 34

Table: Refinement parameters
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SIESTA

SIESTA

Spanish Initiative for Electronic Simulations with Thousands
of Atoms (www.uam.es/siesta)
Electronic structure calculations and ab initio molecular
dynamics simulations
Linear combination of numerical atomic orbitals

www.uam.es/siesta
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What have we done?

Work with ab-initio calculation

From ideal superspace model we get model for γ = 3/17
(x = 3/34 Fe31S34).

From this model we get 3 dimensional structure.
We calculate the forces acting on the atoms.
We translate the forces to superspace.
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Forces in Superspace

Fe atoms forces
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Conclusions

Superspace can . . .
. . . unify monoclinic pyrrhotites.

. . . be used to study families of compounds.

. . . be used to study not only displacement modulation, but
also other properties (e.g. forces).



Outline Introduction Superspace model for Pyrrhotites (Fe1−x S) Ab initio insights Conclusions

Conclusions

Superspace can . . .
. . . unify monoclinic pyrrhotites.
. . . be used to study families of compounds.

. . . be used to study not only displacement modulation, but
also other properties (e.g. forces).



Outline Introduction Superspace model for Pyrrhotites (Fe1−x S) Ab initio insights Conclusions

Conclusions

Superspace can . . .
. . . unify monoclinic pyrrhotites.
. . . be used to study families of compounds.
. . . be used to study not only displacement modulation, but
also other properties (e.g. forces).



Outline Introduction Superspace model for Pyrrhotites (Fe1−x S) Ab initio insights Conclusions

There is more work to do.

What can be done next?
Compare forces of different structures.

Relax structure in the calculations and compare the
displacement modulations.
Measure new members if available.
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Displacive modulations
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Yamamoto and Nakazawa’s structural model

Cell parameters.

Atomic Domains
Symmetry
Modulation parameters.

a = 11.952 Å b = 6.802 Å c = 5.744 Å
α = 90◦ β = 90◦ γ = 90◦

Xmm21(00γ)

X = {{E |0000}, {E |1/21/200}, {E |1/2001/2}, {E |01/201/2}}



Yamamoto and Nakazawa’s structural model
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Cell parameters.
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Cell parameters.
Atomic Domains (Continuous along x4)
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Yamamoto and Nakazawa’s structural model

Cell parameters.
Atomic Domains (Continuous along x4)
Symmetry
Modulation parameters.

Xmm21(00γ)

X = {{E |0000}, {E |1/21/200}, {E |1/2001/2}, {E |01/201/2}}

Positional Ocupational Thermal Σ

Fe 27/26 8/8 1/1 36/35
S 27/27 0/0 1/1 28/28
Σ 54/53 8/8 2/2 64/63

Table: Parameters



New structural model

Cell parameters

Atomic Domains:
Symmetry
Modulation parameters

a = 11.952 Å b = 6.802 Å c = 5.744 Å
α = 90◦ β = 90◦ γ = 90◦



New structural model

Cell parameters
Atomic Domains:

Symmetry
Modulation parameters

x1 x2 x3 x4 ∆

Fe 1/8 1/8 0 5/8 1− x = 10/11

S 1/8 −1/24 1/4 − 1

Table: Independent Atomic Domains



New structural model

Cell parameters
Atomic Domains:
Symmetry

Modulation parameters

Xddd(00γ)00s
X = {{E |0000}, {E |1/2001/2}{E |01/201/2}{E |1/21/200}}



New structural model

Cell parameters
Atomic Domains:
Symmetry
Modulation parameters

Positional Ocupational Thermal Σ

Fe 27/13 2/0 6/4 35/17
S 27/13 0/0 6/4 33/17
Σ 54/26 2/0 12/8 68/34

Table: Parameters



5.5C - Fe10S11



4C - Fe7S8



6C - Fe11S12

[b]
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