
Images of unpaired electron density in
molecular crystals obtained using

experimentally constrained wavefunctions

Dylan Jayatilaka

University of Western Australia



Acknowledgements

From UWA:

Anne Whitton, Daniel Grimwood, Andrew Whitten, Mark
Spackman

From Nancy:

Sebastien Pillet, Claude Lecomte, Yves Pontillon

Funding:

ARC, CNRS



Outline

1. The constrained wavefunction idea

2. The polarised neutron diffraction (PND) experiment

3. PND constrained wavefunctions and a preliminary
application

4. Polarisabilities and refractive indices from X-ray
constrained wavefunctions



Outline

1. The constrained wavefunction idea

2. The polarised neutron diffraction (PND) experiment

3. PND constrained wavefunctions and a preliminary
application

4. Polarisabilities and refractive indices from X-ray
constrained wavefunctions



Outline

1. The constrained wavefunction idea

2. The polarised neutron diffraction (PND) experiment

3. PND constrained wavefunctions and a preliminary
application

4. Polarisabilities and refractive indices from X-ray
constrained wavefunctions



Outline

1. The constrained wavefunction idea

2. The polarised neutron diffraction (PND) experiment

3. PND constrained wavefunctions and a preliminary
application

4. Polarisabilities and refractive indices from X-ray
constrained wavefunctions



Outline

1. The constrained wavefunction idea

2. The polarised neutron diffraction (PND) experiment

3. PND constrained wavefunctions and a preliminary
application

4. Polarisabilities and refractive indices from X-ray
constrained wavefunctions



The constrained wavefunction idea
Key motivations

We want a better model for electron densities in solids.



The constrained wavefunction idea
Key motivations

We want a better model for electron densities in solids.



The constrained wavefunction idea
Key motivations

We want
I to make full use of our quantum mechanical knowledge

about the electron density

I to get more information out of experimental data which
probes electrons in solids



The constrained wavefunction idea
Key motivations

We want
I to make full use of our quantum mechanical knowledge

about the electron density
I to get more information out of experimental data which

probes electrons in solids



The constrained wavefunction idea

To get a quantum mechanical wavefunction which fits the
diffraction data.



The constrained wavefunction idea

To get a quantum mechanical wavefunction which fits the
diffraction data.



The constrained wavefunction idea

Theoreticians minimise the energy:

E(c) = 〈Φ(c)|H|Φ(c)〉

Energy
Wavefunction parameters

Experimentalists minimise the error:

χ2(c)

Experimental model parameters



The constrained wavefunction idea

Theoreticians minimise the energy:

E(c) = 〈Φ(c)|H|Φ(c)〉

Energy

Wavefunction parameters

Experimentalists minimise the error:

χ2(c)

Experimental model parameters



The constrained wavefunction idea

Theoreticians minimise the energy:

E(c) = 〈Φ(c)|H|Φ(c)〉

Energy
Wavefunction parameters

Experimentalists minimise the error:

χ2(c)

Experimental model parameters



The constrained wavefunction idea

Theoreticians minimise the energy:

E(c) = 〈Φ(c)|H|Φ(c)〉

Energy
Wavefunction parameters

Experimentalists minimise the error:

χ2(c)

Experimental model parameters



The constrained wavefunction idea

Theoreticians minimise the energy:

E(c) = 〈Φ(c)|H|Φ(c)〉

Energy
Wavefunction parameters

Experimentalists minimise the error:

χ2(c)

Experimental model parameters



The constrained wavefunction idea
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E(c) + λχ2(c)
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The constrained wavefunction idea

We restrict our attention to those which yeild the experimental
density ρExpt . We find the one with minimum energy.
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What has been achieved so far?
After fitting, structure factors agree better with accurate calculations

χ2 values between Fk ’s obtained from the constrained
Hartree-Fock wavefunction, and MP2 and BLYP calculations:

Fk method Ammonia Urea Alloxan
HF (no constraint) 6.4 3.5 0.7
MP2 4.4 2.9 0.6
BLYP 5.3 2.7 0.6
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What has been achieved so far?
Ammonia: effect of cluster size on constrained fit

χ2 statistics for HF structure factors, for the different clusters,
before fitting..

Model χ2

(NH3)1 10.9
(NH3)4 11.3
(NH3)7 8.0



What has been achieved so far?
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Difference density plots for fitted wavefunctions:

(NH3)1 (NH3)4 (NH3)7
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What has been achieved so far?

I Structure factors agree better with accurate correlated
calculations, than with the original Hartree-Fock results.

I The effects of the crystalline lattice can be modelled
I For non-centrosymmetric structures, the phases obtained

for the structure factors are hardly perturbed in the
presence of noisy data

I Properties related to the density matrix (e.g. kinetic energy,
kinetic energy densities, and electron localisation
functions) can be obtained
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What has been achieved so far?
Properties from the density matrix

The Fermi-hole mobility function for Urea (FHMF).

FHMF Change due to fitting
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The PND experiment

In the PND experiment the magnetic part of the scattering
comes from the Fourier transform of the magnetic field density
in the crystal B̄ .
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Where do the magnetic fields come from, in a crystal?



The PND experiment

The magnetic field in crystals is due to unpaired spins and cur-
rents due to electron motion.



The PND experiment

In organic molecule crystals the measured magnetic scattering
is due mainly to unpaired spins aligned in the z direction:
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PND constrained wavefunction

The final equations to solve1 have the following form:

(Fα + λv N)cα = Scαεα

(Fβ − λv N)cβ = Scβεβ

where

v N =
ge

2NN

NN∑
k

1
(σN

k )2

(
F N,exp

k − |F N
k |

)
Ik

1assuming a superposition of non-interacting molecular fragments
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The situation just after two months ago

χ2

X-ray χ2, UHF 1.27
PND χ2, UHF 125
PND χ2, UBLYP 4.8
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I We have derived and implemented a PND constrained
wavefunction technique to recover spin densities in
molecular crystals of organic radicals.

I Density functional theory is essential to even get
qualitatively correct spin densities

I Hartree-Fock results for the charge density of the radical
are extremeley good, but are obtained from a wavefunction
which is qualitatively wrong.
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Why is non-linear optics important?

1. Control of refractive index by intensity of electric field

n2 = 1 + χeff

2. Make “doubled” frequencies of light

P ≈ ε0(χ
(1)E + χ(2)E2)

≈ ε0(χ
(1)E + χ(2)E2
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Non-linear optics and constrained wavefunctions
Non-linear optics on a molecular level

Analogue of the bulk equation is:

〈µ〉 = µ0 + αE + βEE + . . .

where

ααβ = Pαβ

∑
i 6=0

〈0|µα|i〉〈i |µβ|0〉
E0 − En

≈ 2
∆

[〈0|µαµβ|0〉 − 〈0|µα|0〉〈0|µβ|0〉]

where in the last line we make the Unsöld approximation
(Sylvian and Csizmadia; Spackman).
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functions to develop models that fit the experimental data?
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Non-linear optics and constrained wavefunctions
Results for α (linear polarizability)

αxx αyy αzz ᾱ

Benzene X-ray constrained 6.78 13.02 13.37 11.05
HF 7.18 12.77 12.77 10.91
MP2 7.25 13.40 13.40 11.35

Urea X-ray constrained 4.55 6.98 6.94 6.15
HF 3.87 5.69 5.83 5.13
MP2 4.40 6.79 6.87 6.02

MNA X-ray constrained 9.59 18.10 25.51 17.73
HF 10.0 18.47 23.19 17.22



Non-linear optics and constrained wavefunctions
Refractive index

Expt X-ray fitted HF
Benzene n1 1.51 1.51 1.51

n2 1.61 1.66 1.66
n3 1.52 1.50 1.50

Urea n1 1.48 1.49 1.40
n2 1.58 1.61 1.50

MNA n1 1.95 2.07 1.94
n2 1.72 1.70 1.71
n3 1.43 1.32 1.34


