X-ray Diffraction Study of Thermal Properties of Titanium Oxide Stanko Popović^a, Željko Skoko^a, Andreja Gajović^b, Krešimir Furić^b, Svetozar Musić^b, ^aPhysics Department, Faculty of Science, University of Zagreb, 10002 Zagreb, POB 331, Croatia. ^bRuđer Bošković Institute, 10002 Zagreb, POB 180, Croatia. E-mail: spopovic@phy.hr

Temperature dependence of microstructure of titanium oxide, TiO_2 , and the phase transition of anatase (A) to rutile (R) were studied by *in situ* X-ray powder diffraction and Raman spectroscopy, as well as by TEM and SAED techniques. The as-synthesized TiO_2 p.a. showed a gradual transition $A \rightarrow R$ during the temperature increase from ≈ 1200 K to ≈ 1570 K and during the temperature decrease to ≈ 600 K. High-energy ball-milling at room temperature induced a partial transition $A\rightarrow R$. The transition continued during the temperature increase to ≈ 1370 K and during the temperature decrease, and is accompanied by sharpening of diffraction lines. Anisotropy of thermal expansion was noticed for both A and R. In the transition $A\rightarrow R$, the nuclei of R are formed either throughout the A crystallites (in case of as-synthesized TiO_2 p.a.) or mainly in the interior of the A crystallites (in case of milled TiO_2 p.a.). These nuclei grow in number and size with a prolonged time of thermal agitation.

Keywords: titanium oxide, phase transition, thermal expansion