
## X-Ray Analyses of DNA Dodecamers Containing 2'-Deoxy-5-formyluridine

Masaru Tsunoda<sup>a</sup>, Kazuo T. Nakamura<sup>a</sup>, Takeshi Sakaue<sup>b</sup>, Satoko Naito<sup>b</sup>, Tomoko Sunami<sup>b</sup>, Naoko Karino<sup>c</sup>, Yoshihito Ueno<sup>c,d</sup>, Akira Matsuda<sup>c</sup>, Akio Takénaka<sup>b</sup>, <sup>a</sup>School of Pharmaceutical Sciences, Showa University, Japan. <sup>b</sup>Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan. <sup>c</sup>Graduate School of Pharmaceutical Sciences, Hokkaido University, Japan. <sup>d</sup>Faculty of Engneering, Gifu University, Japan. E-mail: masaru@pharm.showa-u.ac.jp

It is known that formylation of thymine base induces purine transition in DNA replication. In order to establish the structural basis for such mutagenesis, crystal structures of two kinds of DNA dodecamers  $d(CGCGRATf^5UCGCG)$  with  $f^5U=2$ '-deoxy-5-formyluridine and R=A or G have been determined. The  $f^5U$  residues form a Watson-Crick-type pair with A[1,2] and two types of pairs

(wobble and reversed wobble) with G[3] (*see* figure), the latter being the first example. Structural modeling suggests that the DNA polymerase can accept the reversed wobble pair with G, as well as the Watson-Crick pair with A.



**Figure** 2|Fo|-|Fc| maps around the f<sup>6</sup>U residues found in crystals of f<sup>6</sup>U:G.

[1] Tsunoda M., Karino N., et al., *Acta. Cryst.*, 2001, **D57**, 345. [2] Tsunoda M., Kondo J., et al., *Biophys. Chem.*, 2002, **95**, 227. [3] Tsunoda M., Sakaue T., et al., *Nucleic Acids Res. Suppl.*, 2001, **1**, 279.

Keywords: DNA crystallography, mutagenesis, novel structures