Synthesis and Structural Characterization of a Series of High-Hydride Content Osmium-Rhodium Carbonyl Complexes

Jasmine P.K. Lau, Wing-Tak Wong, Department of Chemistry, The University of Hong Kong, Pokfulam Road, HKSAR, P. R. China. Email: h9924717@hkusua.hku.hk

Hydrido-transition metal clusters have been known for years, however few are reported in which the ratio hydride : metal exceeds unity. Such high hydrogen content of the clusters is important for the transition metal complexes to serve as hydrogenation catalyst and potential hydrogen storage materials. Hydrogenation of $[Os_5Rh_2(\eta^6 C_6H_5CH_3)(\mu$ -CO) (CO)₁₆] with $[Os_3(\mu-H)_2(CO)_{10}]$ in chloroform under reflux resulted in two hydrogen rich compounds [{Os₇Rh₃(µ- $H_{11}(CO)_{23}$ · CH_2Cl_2] 1 and [{ $Os_5Rh_3Cl(\mu-H)_8(CO)_{18}$ } · CH_2Cl_2] 2 in moderate yield. While treatment of $[Os_5Rh_2(\eta^6-C_6H_5CH_3)(\mu-$ CO)(CO)₁₆] with hydrogen in refluxing chloroform yielded another new cluster compound, $[\mathrm{Os}_5\mathrm{Rh}(\mu\text{-}\mathrm{H})_5(\mathrm{CO})_{18}]$ 3 in 20% yield, together with a known osmium-rhodium cluster, $[Os_6Rh(\mu-H)_7(\mu-CO)(CO)_{18}]$ as the major compound. The molecular structures of the three clusters have been established by single crystal X-ray diffraction, carried out on crystals of compounds 1-3 by slow evaporation of *n*-hexane into CH_2Cl_2 . The metal core of 2 consists of two tetrahedral, Os(1), Os(2), Rh(2), Rh(1) and Os(4), Os(5), Rh(3), Rh(1) units fused together to form a bitetrahedron via the Rh(1) vertex. The bitetrahedron is additionally bonded to another Os(3) by Rh(2) and Rh(3), which form a triangular face with a Cl atom tri-capping the three metal atoms in a μ^3 mode. The corresponding Rh-Cl-Rh and Rh-Cl-Os bond angles fall in the range 70.1(3) to $73.0(3)^{\circ}$, which is comparable to that observed in a Cl face-bridged tritungsten cluster, $[W_3(\mu_3-Cl)(\mu-Cl)_3Cl_9]^{3-}$.

Keywords: osmium-rhodium clusters, hydride content, single crystal x-ray diffraction