

## **Structural and Thermochemical Studies of Lattice Inclusion Hosts**

Ashwini Nangia, *School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.* E-mail: ashwini\_nangia@rediffmail.com

Lattice inclusion hosts are molecules that form cage or channel type frameworks in the solid-state having Å to nanometer-sized voids [1]. Recent crystal engineering strategies for the design of open-framework solids, inclusion of small guest/solvent molecules in the voids, and thermo-chemical behavior of host-guest complexes will be discussed. Significant structural and functional differences in channel and cage type host structures are due to differences in hydrogen bonding / intermolecular interactions, van der Waals close packing, and the strength of host lattice in trapping guest species. Structural control of the cage/channel lattice and modification of pore size/shape through functional group and guest selection is illustrated in robust organic host systems. Certain volatile guests are tightly enclathrated in the host framework as measured by high  $T_{onset}$  values in DSC measurements. Selective guest inclusion is monitored by TG-IR and explained through hydrogen bonding in X-ray crystal structures. Some host scaffolds assembled via O-H...O, N-H...O hydrogen bonds and halogen...halogen, pi-pi stacking interactions based on T-shaped, H-shaped and trigonal tectons have appeared in recent publications from our group [2-4].

[1] Nangia A. in *Nanoporous Materials: Science and Engineering*, Eds. G. Q. Lu and X. S. Zhao, World Scientific, Singapore, 2005, 165-187. [2] Reddy C. M. et al., *CrystEngComm*, 2005, **7**, 44-52. [3] Aitipamula S., Nangia A., *Supramol. Chem.*, 2005, **17**, 17-25. [4] Saha B. K. et al., *Cryst. Growth Des.*, 2005, **5**, ASAP.

**Keywords:** crystal engineering, guest-host structures, thermal analysis