Homo- and Heterochirality in Crystal
Rem G. Kostyanovsky, Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
E-mail: kost@chph.ras.ru

In the present communication the methods for the recognition of homo (Ho)- and heterochiral (He) crystals are considered [1], as well as the conditions for the transformations Ho→He or He→Ho crystallization [2], the directed construction of Ho-crystals [3], solid-phase reactions Ho↔He, synthesis of Ho-crystals [4], isomerizations during the formation of the solid phase [5] and the spontaneous resolution of Ho-crystals [6].

On the example of glycoluriles the methodology for the development of chiral drugs via the spontaneous resolution is presented [7].

The differences in physical properties of enantiomers and racemates are demonstrated by distinct differences in ESR spectra of polycrystalline samples of the enantiomers and racemates of nitroxide radicals [8]. Recently it has been found that the enantiomers of a series of compounds are effective organogelators, whereas their racemates do not show that property [9].

For the first time the supramolecular H-bonded catenanes and polycatenated structures in crystals have been synthesized [10].

This works were supported by Russian Academy of Sciences, RFBR (grant nos. 03-03-04010 and 03-03-32019) and INTAS (grant no. 99-00157).


Keywords: chirality, solid phase reactions, recognition of chirality