

Investigation of $\text{LaMn}_{2-x}\text{Fe}_x\text{Si}_2$ ($0 \leq x \leq 1.2$) by Magnetic Measurements and Neutron Diffraction

Yalcin Elerman^a, Ayhan Elmali^a, Ilker Dincer^a, Helmut Ehrenberg^b, Hartmut Fuess^b, Aziz Daoud-Aladine^c, ^a*Engineering Physics, Ankara University, TR-06100 Besevler-Ankara, Turkey.* ^b*Institute for Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany.* ^c*Laboratory for Neutron Scattering, ETHZ & PSI, CH-5232 Villigen, Switzerland.* E-mail: elerman@ankara.edu.tr

The various magnetic structures and phase transitions in the $\text{LaMn}_{2-x}\text{Fe}_x\text{Si}_2$ system have been thoroughly studied by X-ray powder diffraction, magnetic measurements and powder neutron diffraction. The substitution of Fe for Mn leads to a decrease in the lattice parameters and the magnetic interactions in the Mn sublattice cross over from a ferromagnetic character to an antiferromagnetic one. The magnetic structures of the $\text{LaMn}_{2-x}\text{Fe}_x\text{Si}_2$ compounds with $x = 0.2, 0.475, 0.5, 0.7$ and 1.0 have been determined between 2 and 450 K by neutron diffraction. A typical SmMn_2Ge_2 -like magnetic behavior is observed for the $x = 0.475$ sample. The magnetic phase transition from ferromagnetism to antiferromagnetism for this sample occurs at the *intralayer* Mn-Mn distance $d_{\text{Mn-Mn}} = 2.89$ Å. This value exceeds the well known corresponding threshold value $d_{\text{Mn-Mn}} = 2.87$ Å in the pure Mn RMn₂X₂ compounds [1-2]. The results are summarized in the $\text{LaMn}_{2-x}\text{Fe}_x\text{Si}_2$ magnetic phase diagram [3].

[1] Elerman Y., Dincer I., Elmali A., Ehrenberg E., Fuess H., Duman E., Acet M., *J. Phys.: Condens. Mater.*, 2004, **16**, 405. [2] Duman E., Acet M., Dincer I., Elmali A., Elerman Y., *J. magn. Magn. Mater.*, 2004, **272-276**, 529. [3] Dincer I., Elmali A., Elerman Y., Ehrenberg E., Fuess H., Daoud-Aladine A., *J. Phys.: Condens. Mater.*, 2005, *in press*.

Keywords: rare-earth manganese silicides, layered structure, neutron diffraction