

The Structure Determination of Single-component Molecular-metal

Eiji Nishibori^a, Yuichi Fujishiro^a, Makoto Sakata^a, Akiko Kobayashi^b,
Masaki Takata^c, Hayao Kobayashi^d, ^a*Department of Applied Physics,
Nagoya University, Nagoya, Japan.* ^b*Research Centre for
Spectrochemistry, Graduate School of Science, The University of
Tokyo, Hongo, Japan.* ^c*Japan Synchrotron Research Institute and
CREST, Kouto, Japan.* ^d*Institute for Molecular Science and CREST,
Okazaki, Japan.* E-mail: eiji@mcr.nuap.nagoya-u.ac.jp

The single-component molecular metals, $\text{Ni}(\text{tmdt})_2$ ^[1] and related materials, have attracted much interests due to their characteristic properties. Many other related materials have been produced by changing the metal atom and extended-TTF ligands. The crystal structure determination of newly produced materials is often very difficult due to only small amount of powder sample being available.

In this study, we determined 5 crystal structures of $\text{Ni}(\text{tmdt})_2$ related materials, which are $\text{Ni}(\text{dt})_2$, $\text{Pd}(\text{dt})_2$, $\text{Au}(\text{tmdt})_2$, $\text{Pd}(\text{tmdt})_2$, and $\text{Pd}(\text{dmdt})_2$, by Genetic Algorithm combined with MEM/Rietevled method using synchrotron radiation X-ray powder diffraction data measured at SPring-8, BL02B2. The reliability factors, R_{wp} and RI , of Rietveld refinements are in the the range of 2~4% and 3~7%, respectively. It was found that the molecular stacking is different by the length of extended-TTF ligands. It is found that the positional relation of neighboring layers is closely related to the conductivity of materials.

[1] Tanaka H., et al., *Science*, 2001, **291**, 285-287.

Keywords: single-component molecular-metal, SR powder diffraction, genetic algorithm