Volume Collapse at the Jahn-Teller Transition in LaMnO₃

Tapan Kumar Chatterji^a, Bachir Ouladdiaf,^a Francois Fauth,^b^aInstitut Laue-Langevin, BP 156, 38042 Grenoble Cedex, France. ^bEuropean Synchrotron Radiation Facility, BP 220, 38032 Grenoble Cedex, France. E-mail: chatt@ill.fr

We have investigated the Jahn-Teller (JT) transition accompanied by the orbital order-disorder transition in LaMnO₃ by high temperature X-ray powder diffraction with synchrotron radiation and also neutron powder diffraction. The unit cell volume of LaMnO3 decreases with increasing temperature in a narrow temperature range below $T_{JT} = 750$ K, and then undergoes a volume collapse at T_{JT} . We interpret this effect as due to the more efficient packing of the MnO₆ octahedra in the orbitally disordered or orbital liquid state. The orbital melting phenomenon can be qualitatively compared with the melting of ice. By constructing a model Hamiltonian involving the pseudospin of Mn³⁺ eg states, the staggered JT distortion and the volume strain coordinate, we show that the anharmonic coupling between these primary and the secondary order parameters leads to the the first-order J-T phase transition associated with a comparatively large reduction of the unit cell volume. We explain the temperature dependence of the JT distortions and volume strain and discuss the volume change as a function of the anharmonic coupling constant. A continuous change to a second-order transition as a function of the model parameters is obtained. This behaviour has been observed experimentally by us on doping LaMnO₃ with Ba.

Keywords: neutron diffraction, x-ray diffraction, Jahn-Teller phase transition