Lattice Aspects of Crystal Twinning

Hans Grimmer, Laboratory for Developments and Methods, Condensed Matter Research with Neutrons and Muons, Paul Scherrer Institut, Villigen, Switzerland. E-mail: hans.grimmer@psi.ch

Assume that the two individuals forming a twin are related by a mirror reflection parallel to a rational plane $(h \ k \ l)$ or by a 180° rotation with axis parallel to a rational direction $[u \ v \ w]$. Mallard's criterion states that in both cases these elements can be complemented to a pair $(h \ k \ l)$, $[u \ v \ w]$ of rational elements, such that the angle between $[u \ v \ w]$ and the normal to $(h \ k \ l)$, called the obliquity ω , satisfies $\omega \le 6^{\circ}$ and that the twin index *n* is a positive integer not larger than 6 [1,2].

Discussing examples, especially of crystals with symmetries higher than orthorhombic, we shall show that this criterion is often satisfied for growth twins originating from a twinned nucleus. Growth twins formed by coalescence of two single crystals can better be described if stricter limits are imposed on ω and less strict ones on *n*. If $(h \ k \ l)$ is interpreted as the habit plane K_1 of a mechanical twin and $[u \ v \ w]$ as η_2 , the observed values of the shear show that the restriction on ω has to be relaxed at least for n = 1 [3].

 Friedel G., Leçons de cristallographie. Reprinted 1964. Paris: Blanchard.
Hahn Th., Klapper H., Twinning of crystals, in International Tables for Crystallography, 2003, D. [3] Grimmer H., Kunze K., Acta Cryst., 2004, A60, 220.

Keywords: crystal growth, twinning, coincidence-site lattice