Ternary Phases in the Yb-Zn-Al System

Maria L. Fornasini, Pietro Manfrinetti, Donata Mazzone, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy. Email: cfmet@chimica.unige.it

The facility of ytterbium to form compounds with zinc (eight phases in the Yb-Zn system) and the presence of $YbAl_2$ with intermediate valence in the Yb-Al system have led to the study of the ternary Yb-Zn-Al system with the aim of finding compounds with possible interesting magnetic properties.

The alloys were prepared by melting the elements and annealing at 600-750°C. All samples were examined by optical and microprobe analysis and the crystal structure was determined by X-ray powder and single crystal methods.

Thirteen phases were identified. Six of them correspond to phases already present in the Yb-Zn or Yb-Al system [1], where the third element substitutes the Zn or Al atoms, more or less extensively, maintaining the same structure. Examples are YbZn_{0.88}Al_{1.12} (MgCu₂type) and Yb₃Zn_{4.48}Al_{6.16} (La₃Al₁₁-type). Six ternary compounds crystallize with other known structure types. Examples are YbZnAl (MgNi₂-type) with all mixed Zn/Al occupations of the Ni sites and Yb₈Zn_{48.5}Al_{17.5} isotypic with Yb₈Cu₁₇Al₄₉ [1], with partial ordering of the Zn atoms. A new hexagonal structure is observed for YbZn_{7.3}Al_{0.5}, by taking nine CaCu₅ cells and substituting some of the Yb atoms (28.9%) with mixed Zn/Al pairs. This substitution mechanism, known for a long time, is found also in YbZn_{7.8}Al_{0.4} and YbZn_{9.2}Al_{1.3} with structures derived from the U₂Zn₁₇ and SmZn₁₁ types, respectively.

[1] CRYSTMET, Structure and Powder Database for Metals, 2004. Keywords: crystal chemistry and structure, intermetallic compounds, ternary alloys