Atomic Image of Diluted Magnetic Semiconductor Zn_{1-x}Mn_xTe Obtained by X-ray Fluorescence Holography

Shinya Hosokawa^a, Naohisa Happo^b, Kouichi Hayashi^c, Toru Ozaki^a, ^aFaculty of Engineering, Hiroshima Institute of Technology. ^bFaculty of Information Sciences, Hiroshima City University. ^cInstitute for Materials Research, Tohoku University, Japan. E-mail: hosokawa@cc.it-hiroshima.ac.jp

From an X-ray diffraction [1], the lattice constant of diluted magnetic semiconductor $Zn_{1-x}Mn_xTe$ linearly changes with varying *x* (Vegard's law), while an XAFS results [2] showed almost unchanged Mn-Te and Zn-Te bond lengths (Pauling's rule). This discrepancy led to a question of how the large the large MnTe₄ tetrahedra can be squeezed into the small ZnTe₄ lattice.

X-ray fluorescence holography (XFH) is a new technique that allows one to investigate a three-dimensional local image around a specific element. The sample was irradiated by intense X-rays of certain energies beyond the Mn K absorption edge at BL37XU/SPring-8 in order to obtain the Mn K_{α} fluorescence hologram [3]. A three-dimensional atomic image around the Mn central atoms was derived from the hologram using Barton's algorithm. The nearest- and third-nearest-neighbour Te atoms were clearly visualized. However, the second-nearest-neighbour Zn or Mn atoms are barely visible in this image due probably to a highly distorted cation Zn(Mn) sub-lattice.

Yorder-Short D.R., et al., J. Appl. Phys., 1985, 58, 4056.
Happo N., et al., J. Phys.: Condens. Matter, 1996, 8, 4315.
Hosokawa S., et al., Jpn. J. Appl. Phys, 2005, 44, 1011.

Keywords: three-dimensional image reconstruction, x-ray fluorescence spectroscopy, magnetic semiconductors