Cobalt Incorporation in Mullite

<u>Jasminka Popovic</u>^a, Biserka Grzeta^a, Emilija Tkalcec^b, Stanislav Kurajica^b, ^aRudjer Boskovic Institute, P.O. Box 180, HR-10002, Zagreb, Croatia. ^bFaculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 20, HR-10000 Zagreb, Croatia. E-mail: jpopovic@irb.hr

Mullite (nominally 3Al₂O₃·2SiO₂) is technologically important material for advanced ceramics applications. Depending on the synthesis procedure, mullite is able to incorporate considerable amounts of transition metal cations [1]. While Cr^{3+} , Fe^{3+} and V^{3+} have the strongest tendency of incorporation in mulllite, only low or very low amounts of Fe²⁺, Co²⁺, Mn²⁺ and Zr⁴⁺ ions can enter the mullite structure. A major goal of this work is to determine upper limit of Co²⁺ incorporation in mullite. The samples of pure mullite and of Crdoped mullite were derived from diphasic precursors and sintered at 1600 °C for two hours. Four samples were prepared containing 0, 1, 2 and 3 at% Co. They were examined by XRD at room temperature. Samples contained mullite phase and small amounts of α -Al₂O₃ and CoAl₂O₄. Unit-cell parameters of the mullite phase were refined by the whole-powder-pattern fitting method [2]. They increased just slightly with increase of cobalt content in the samples. Quantitative phase analysis showed that the samples with 1, 2, and 3 at% Co contained 0.8, 2.5 and 5.1 wt% CoAl₂O₄, respectively. These means that ~0.6 at% Co was incorporated in mullite. Same value of upper limit of Co²⁺ incorporation in mullite was obtained on the basis of intensity ratio I(311, CoAl2O4) / I(111, mullite phase), which was linearly dependent on the Co content in the examined samples.

[1] Schneider H., Ceramics Transactions, 1990, **6**,135. [2] Toraya H., J. Appl. Cryst., 1986, **19**, 440.

Keywords: co-doped mullite, x-ray diffraction, fitting methods