Structure Determination of Embedded Precipitates by Precession Electron Diffraction and Synchrotron Radiation: A Comparison

Vidar Hansen^a, Atle Kverneland^a, Helge Bøvik Larsen^a, Philip Pattison^b, Roger Vincent^c, Jon Gjønnes^d, ^aDepartment of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger, Norway. ^b SNBL-ESRF, 6 Rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex9, France. ^cH.H. Wills Laboratory, University of Bristol, Tyndall Ave, Bristol BS8 1TL, United Kingdom. ^dCenter for Materials Science and nanotechnology, University of Oslo, Gaustadalleen 21, N-0349 Oslo, Norway. E-mail: vidar.hansen@uis.no

Phases that appear in industrially important materials are often difficult to prepare in a form suitable for structure determination by standard X-ray methods. The metastable, η' -phase in age-hardened Al-Zn-Mg alloys occurs only as nano-sized semicoherent precipitates embedded in the alloy matrix. Previous X-ray [1], and HRTEM [2] work have not provided a satisfactory structure solution. The η' structure has therefore been analyzed by us, using three-dimensional electron diffraction data collected from thin-foils prepared from the age-hardened 88.12 at%Al, 10.2 at%Zn, 1.68 at%Mg alloy, as well as synchrotron radiation data obtained from individual grains extracted from a specially prepared alloy casting.

Structure analysis of the η' -phase is met with several complications: Faults are frequent, composition and density are not known; the diffraction patterns are superpositions of four equivalent orientations of the hexagonal η' -lattice relative to the aluminum matrix ($a^*_{\eta'} = (1/3) [220]_{Al}$; $c^*_{\eta'} = (1/6)[1-11]_{Al}$). The data are thus incomplete, due to overlap of reflections - and are in the electron case severely influenced by matrix-precipitate double diffraction. The latter effect was suppressed in our study, by the precession technique [3]. A three-dimensional data set to was collected by merging intensities from five projections. Synchrotron data from the same projections were extracted from a continuous three-dimensional intensity recorded on a MAR image plate.

Patterson and Fourier maps calculated from the incomplete intensity data obtained by either technique led to a structure model, in the space group, $P6_3mm/c$ (194). Comparisons between selected area and precession electron diffraction with the synchrotron data will be presented.

 Auld J.H., Cousland S.McK., *Scripta Met.*, 1971, **5**, 765. [2] Li X.Z., Hansen V., Gjønnes J., Wallenberg L.R., *Acta Mater.*, 1999, **47**, 2651. [3] Vincent R., Midgley P.A., *Ultramicroscopy*, 1994, **53**, 271.

Keywords: structure determination, electron diffraction, synchrotron radiation