Synchrotron XRD Study of ZrO_2 -CeO₂ Nanopowders Synthesised by Gel-combustion

<u>Diego G. Lamas</u>^a, Rodolfo Fuentes^a, Ismael Fábregas^a, María Emilia Rapp^a, Gustavo Lascalea^a, Jorge Casanova^a, Noemí Walsöe de Reca^a, Aldo Craievich^b, ^aCINSO (Centro de Investigaciones en Sólidos), CITEFA-CONICET, Argentina. ^bInstituto de Física, Universidade de São Paulo, Brazil. E-mail: dlamas@citefa.gov.ar

Zirconia-ceria solid solutions are being widely investigated due to their excellent mechanical and catalytic properties. For example, these materials are extensively used as promoters in three-way catalysts.

In this work, the crystal structure of nanocrystalline ZrO₂-CeO₂ solid solutions, synthesised by a pH-controlled nitrate-glycine gelcombustion process, has been studied by using a high-intensity synchrotron X-ray diffractometer (D12A-XRD1 beamline of the LNLS, Brazilian Light Facility). Several weak Bragg peaks of the tetragonal phase, which correspond to forbidden reflections in the case of a perfect cubic fluorite structure, were detected. By determining the integrated intensity of the strongest of these reflections, (112), as a function of the CeO₂ content, the tetragonal-cubic phase compositional boundary was established to be at (85±5) mol% CeO₂. For a CeO₂ content up to (68 ± 2) mol%, we identified a tetragonal phase with c/a > 1, whereas, in the range between 68 and 85 mol% CeO_2 , the existence of a tetragonal phase with c/a = 1 and oxygen anions displaced from their ideal positions in the cubic phase (keeping the tetragonal symmetry) was verified. Finally, solid solutions with CeO₂ contents higher than 85 mol% exhibit the cubic fluorite-type phase.

Keywords: synchrotron powder diffraction, zirconia-ceria, nanocrystalline materials