Incommensurate Crystallographic Shear Structure of Ba_xBi_{2-2x}Ti_{4-x}O_{11-4x} (x=0.275)

Yuichi Michiue^a, Akiji Yamamoto^a, Mitsuko Onoda^a, Akira Sato^a, Takaya Akashi^b, Hisanori Yamane^c, Takashi Goto^d, ^aNational Institute for Materials Science, Tsukuba, Japan. ^bGraduate School of Engineering, Hokkaido University, Sapporo, Japan. ^cCenter for Interdisciplinary Research, Tohoku University, Sendai, Japan. ^dInstitute for Materials Research, Tohoku University, Sendai, Japan. E-mail: MICHIUE.Yuichi@nims.go.jp

The 4d structure of the title compound consists of atoms with sawtooth-like modulation functions and step-like occupation functions (occupation domains, OD). Most of the structural parameters defining OD are concerned with γ (=0.36693), the **c*** component of the modulation wavevector. The 3d structure is closely related to the β -Bi₂Ti₄O₁₁ structure, where the linkage of TiO₆ coordination octahedra constructs the host framework providing the one-dimensional tunnel-like space for the accommodation of Bi ions. Domain boundaries are introduced by a kind of the crystallographic shear (CS) operation in the present structure. Namely, the layer unit consisting of Bi₂Ti₂O₈²⁻ is removed from the β -Bi₂Ti₄O₁₁ structure, and remained blocks are displaced to fill the gap. The negative charge of the removed unit is compensated by the substitution of Ba²⁺ ions for Bi³⁺ ions in tunnels.

The unique character of this incommensurate structure is the aperiodic insertion of domain boundaries in contrast to usual (*i.e.* commensurate) CS structures. To the best of our knowledge, the present study is the first example of the quantitative analysis of the incommensurate CS structure.

Keywords: incommensurate structures, higher-dimensional structure analysis, crystallographic shear structures