Order-disorder, Polytypes and Twinning in the Crystal Structure of Vurroite

Daniela Pinto^a, Elena Bonaccorsi^b, Emil Makovicky^c, Tonci Balić-Žunić^e, ^aDipartimento Geomineralogico, Università degli Studi di Bari, Via E. Orabona, 4, I-70125 Bari, Italy. ^bDipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, I-56126 Pisa, Italy. ^cGeological Institute, University of Copenhagen, Ostervoldgade 10, DK-1350 Copenhagen K, Denmark. E-mail: d.pinto@geomin.uniba.it

Vurroite, ideally Pb₂₀Sn₂(Bi,As)₂₂S₅₄Cl₆, is a complex mineral type, where the two minor chemical components, Sn and Cl, act as essential constituents together with Pb, Bi, As and S [1, 2]. X-ray single crystal data on vurroite strongly indicate an orthorhombic Fcentred symmetry [1, 3]. In this study the crystal structure of vurroite is interpreted as an OD structure belonging to the category III of OD structures composed of equivalent layers [4]. The application of the OD procedures allowed the derivation of the OD-groupoid family (λ and σ operations), as well as the MDO (Maximum Degree of Order) structures. The layer symmetry (λ) is A(2)mm, the interlayer symmetry (σ) consists of a glide plane $n_{1/2}$ and two-fold screw axes parallel to [010] and [001] with the translation components $\frac{1}{4} b$ and $\frac{1}{4} c$, respectively. For this OD family two MDO polytypes exists. The former has monoclinic symmetry, C12/c1, whereas the latter is monoclinic, P12/c1. The OD treatment of the crystal structure of vurroite allowed to prove that the true symmetry of this mineral is monoclinic and that the apparent orthorhombic symmetry observed for the X-ray pattern of the measured crystal is due to a twinning phenomenon.

Prof. S. Merlino is gratefully acknowledged for his contribution on the OD interpretation of the structure of vurroite.

[1] Pinto D., *PhD thesis*, University of Bari, 2004, 165. [2] Garavelli A., Mozgova N.N., Orlandi P., Bonaccorsi E., Pinto D., Borodaev Y., *Canadian Mineralogist*, 2005, *in press*. [3] Pinto D., Balić-Žunić T., Bonaccorsi E., Makovicky E., 26th Nordic Geological Winter Meeting, Uppsala, Sweden, 2004, 106-107, *abstract*. [4] Dornberger-Schiff K., *Abh. Dtsch. Akad. Wiss. Berlin. Kl. Chem. Geol. Biol.*, 1964, **3**, 1-107.

Keywords: OD structure, twinning, polytypes