Jahn Teller Transition Phase in Cu_{0.5}TiO(PO₄) Oxyphosphate Pierre Gravereau^a, Saïd Benmokhtar^b, Jean-Pierre Chaminade^a, Abdelaziz El Jazouli^b, Eric Lebraud^a, Stanislas Péchev^a, aICMCB-CNRS, University of Bordeaux, Pessac, France. bLCMS, Faculté des Sciences Ben M'Sik, Casablanca, Maroc. E-mail: graver@icmcb-

bordeaux.cnrs.fr

In our research interest on titanium oxyphosphates, several compounds $M^{II}_{0.5} TiO(PO_4)$ have been prepared with $M^{II}=Mg$, Fe , Co , Ni , Cu , Zn. They all belong to the monoclinic $P2_1/c$ structural type determined "ab initio" for $Ni_{0.5} TiO(PO_4)$ from X-ray powder diffraction[1].Thermostructural study of $Cu_{0.5} TiO(PO_4)$ shows a phase transition $\alpha{\longrightarrow}\beta$ (~800°C during heating, ~400°C during cooling).

Single crystals of the α phase have been obtained. Its cell presents a Jahn Teller deformation with Cu-O elongation in the (a,c) plane: a=7.5612(4) ; b=7.0919(4) ; c=7.4874(4)Å ; β =122.25(6)° ; V=339.55(6)ų. The single crystal structure confirms and states more precisely the previous powder model (R_1 =0.023; w R_2 =0.063).

The β phase has been obtained stabilised at room temperature in a powder mixture $\alpha(38\%)+\beta(62\%)$ without impurities. X-ray diffraction pattern of this powder can be indexed in a like α -type $P2_1/c$ monoclinic cell : a=7.1081(10) ; b=7.7384(12) ; c=7.3013(10) Å ; $\beta=119.28(1)^\circ$; $V=350.3(1)\text{Å}^3$. As the α -structure is not a good starting model for Rietveld refinement (divergence), an "ab-initio" structure determination has been done. The refined structure corresponds to a "rocking" of the Jahn Teller elongation from the (a,c) plane to the b direction.

[1] Gravereau P., Chaminade J.P., Manoun B., Krimi S., El Jazouli A., *Powder Diffr.*, 1999, **14**, n.1, 10.

Keywords: oxyphosphates, phase transition, Jahn Teller effect