

Sulfur SAD Structure of Heparin-Binding CRISP from *Naja atra* Reveals Protease and Ion Channel Blocking Domains

Chun-Jung Chen^{a,b,c}, Yu-Ling Wang^{ab}, Shao-Chen Lee^b, King-Siang Goh^b, Wei-Ning Huang^d, Wen-guey Wu^b, ^a*Biology Group, National Synchrotron Radiation Research Center*. ^b*Department of Life Sciences & Structural Biology Program*. ^c*Department of Physics, National Tsing-Hua University*. ^d*Department of Medical Technology, Yuanpei University, Hsinchu, Taiwan*. E-mail: cjchen@nsrrc.org.tw

Various cysteine-rich secretory proteins (CRISP) have been identified in diverse organisms with conserved sequences, including 16 of their cysteines. Although no clear evidence exists for a physiological function of mammalian CRISP found mainly in the epididymis and salivary glands, snake venom CRISP are known to inhibit smooth muscle contraction and cyclic nucleotide-gated (CNG) ion channels. The structure of CRISP-*a* from *Naja atra* is determined at 1.58-Å resolution using the sulfur-SAD method and consists of unique disulfide patterns and two distinct structural domains: a protease sandwich fold (N-terminal) and an ion channel-blocking BgK toxin fold (C-terminal). With one positively charged cluster found at water accessible helix regions next to the Ser-His-Glu triad of the protease domain, heparin binding plays a role in regulating CRISP-*a* activity. As important residues identified to block CNG and K⁺ channels of other toxin homologues are located at one face of the ion channel-blocking domain, the structure provides a basis for rational design of a peptide blocker of the CNG channel. The ion channel-blocking domain and heparin-binding site of CRISP-*a* are suggested to play a chaperone role in leading it to the site of protease action for remodeling of the extracellular matrix in mammalian cells.

Keywords: **sulfur-SAD, toxin CRISP structure, heparin**