Single Crystal and the Third Order non Lineare of the Adeninium Dinitrate

<u>Karim Bouchouit</u>^a, Noureddine Benali-cherif^b, Bouchta Sahraoui^c,
^aDépartement de Chimie, Faculté des Sciences, Université de Jijel.bInstitut des Sciences Exacte.
^bCentre universitaire de Khenchela.

^c(POMA) Université d'Angers, France. E-mail:
karim.bouchouit@laposte.net

We report the measurement of the degenerate fourth-wave mixing (DFWM) of adininium dinitrate in aqueuse aqueous solutions at $\lambda{=}532$ nm in ps regime with different numbers of $\pi{-}conjugated$ bonds. From these measurements, we evaluated the values of the second order hyperpolarizabilities γ , which are about 10^3 larger than the γ value of CS_2 . The influence of $\pi{-}conjugated$ bonds on the third-order susceptibilities and appropriate figures of merits is discussed. The more important seems to be the possibility of a simultaneous increase of the third-order susceptibilities, together with the decrease of the absorption coefficients that open a possibility of their use as promising materials for laser wavelengths mixing.

In the asymmetric unit of the title compound, $C_5H_7N_5^{2+}$, $2NO_3$, the adenine base is diprotonated and cocrystallizes with two nitrate anions. The structure is a layered one, and in each layer all H atoms bonded to O and N atoms are involved in a twodimensional hydrogenbonding network. Short contacts are observed between parallel layers and ensure the cohesion of the crystals.

Keywords: hydrogen bonding, degenerate four wave mixing, third-order susceptibilities