Structural Insights into GnT-I Substrate Recognition & Specificity

Roni D. Gordon^a, Prashanth Sivarajah^b, Malathy Satkunarajah^b, Dengbo Ma^b, Dragos Vizitiu^c, Chris A. Tarling^c, Stephen G. Withers^c, James M. Rini^b, "Department of Biochemistry, University of Toronto. Department of Medical Genetics, University of Toronto. Department of Chemistry, University of British Columbia. E-mail: roni.gordon@utoronto.ca

 β -1,2-N-acetylglucosaminyltransferase I (GnT I; EC 2.4.1.101) is a key carbohydrate processing enzyme in the Golgi – it initiates the conversion of oligomannosyl to complex and hybrid N-linked glycans. GnT I, an inverting glycosyltransferase, catalyzes the addition of GlcNAc to the terminal 3-arm mannose of Man₅Gn₂ glycans found on glycoproteins in the secretory pathway.

We previously determined the x-ray crystal structure of the nucleotide-bound complex of GnT I in the presence of the native UDP-GlcNAc donor [1]. We now present a series of high-resolution donor analog complexes that provide insight into donor recognition and underscore the importance of the C2 position in catalysis.

We also report the structure of a ternary complex of both donor and acceptor substrates bound in the active site, which reveals how GnT I confers acceptor binding specificity by means of multiple subsites on the oligosaccharide.

[1] Unligil U.M., Zhou S., Yuwaraj S., Sarkar M., Schachter H., Rini J.M., *EMBO J.*, 2000, **19**, 5269.

Keywords: glycosyltransferases, enzyme ligand complexes, activesite recognition