High Pressure Structures and Compressibilities of YF₃ and LaF₃ Wilson A. Crichton^a, Pierre Bouvier^b, Andrzej Grzechnik^c, ^aESRF, B.P. 220, 38043 Grenoble, France. ^bENSEEG, INPG, St. Martin d'Héres, France. ^c Universidad del País Vasco, 48080 Bilbao, Spain. E-mail: crichton@esrf.fr

Many studies have been devoted to the study of laser-hosting Ln (Ln = REE, Y, Sc) fluorides; particularly $ALnF_4$ phases crystallizing in the scheelite structure. Yet, for many Ln chemistries the scheelite form is unknown and, in the case of those known compositions, e.g. LiGdF_4 , decomposition, to $\text{LiF} + LnF_3$, occurs at high-p [1]. We have investigated how the LnF_3 structure controls both the synthesis and the decomposition of the binary fluoride phase at high p conditions.

YF₃ crystallizes in the β-YF₃-type structure at ambient p. It has been proposed [2], though not observed, that the high-p, RT structure is the same as that of LaF₃, tysonite-type. This conjecture we can confirm, in addition to obtaining compressibilities of high- and low-p forms. These data allow calculation of molar volumes at high-p, e.g. LiYF₄ cf. LiF + YF₃ and judge the effect of increase in REE-coordination at phase transitions on phase stability.

LaF₃ has no known binary fluoride scheelite forms and undergoes a phase transition at p > 12 GPa to a structure previously described in *Cmma* and *I4/mmm* symmetries (subgroups of CaF₂ structure) [3,4]. We will present our determination of the high-p structure of this phase that extends the currently known transition sequence for LnF_3 , thus:

δ-UO₃ (ReO₃) to dist-ReO₃ to α-UO₃ to β-YF₃ to LaF₃ to Pmmn.

[1] Grzechnik, et al., *J. Phys.:Cond. Matt.*, **2004**, 16, 7779. [2] Atavaeva E.Y., Bendeliani N.A., *Inorganic Materials*, **1979**, 15, 1487. [3] Dyuzheva, et al., *J. Alloys Comps.*, **2002**, 335, 59. [4] Winkler, et al., *J. Alloys Comps.*, **2003**, 349, 111

Keywords: high-pressure structures, transformation, fluorides