Different Building Modes of α-Cyclodextrin/Monoalkyl Amphiphile Complexes

Delphine Gallois-Montbrun^a, Sylviane Lesieur^a, Thierry Prangé^b, Dominique Durand^b, Michel Ollivon^a, Geneviève Le Bas^a, ^aUMR CNRS 8612, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France. ^bLURE, Université Paris Sud, Orsay, France. Email: delphine.gallois@cep.u-psud.fr

In this study, the impact of the length of the guest molecule alkyl chain and the crystallization conditions on the structural parameters of α -cyclodextrin (α -CD)/monoalkyl complexes was determined. Several procedures to crystallize those complexes were developed for different alkylalcohols as model guest molecules, as a function of temperature. Three different crystalline structures were identified depending on the alkyl chain length, using synchrotron X-ray diffraction (LURE, Orsay, France). In all cases, complexes crystallize in channel-type structures, where α -CD molecules are stacked like coins in a roll and the alkyl chain of the guest compound is embedded in the tubular cavity of the α -CDs. However, depending on the length of the chains and the crystallization conditions, the channels are organized differently. C6-C8 chains give rise to a pseudo-hexagonal lattice, a packing mode already observed for polyiodide complexes [1]. C_{10} - C_{12} chains crystallize in a triclinic pseudo-monoclinic C2 lattice, while longer chains up to C₁₈ form hexagonal crystals with R3 symmetry. These two novel crystal structures are described. Understanding these structures opens new routes to nanotube formation through amphiphile-driven crystallization of cyclodextrin templates.

[1] Noltemeyer M., Saenger W., *J. Am. Chem. Soc.*, 1980, **102**, 8, 2710. Keywords: cyclodextrin, nanotubes, supramolecular assembly