Crystal Engineering with Scorpionate Ligands

Martin B. Duriska^a, Stuart R. Batten^a, Jinzhen Lu^a, Paul Jensen^a, Harry Adams^b, Graham M. Davies^{b,c}, John C. Jeffery^c, Graham R. Motson^c, Michael D. Ward^{b,c}, ^aSchool of Chemistry, Monash University, 3800, Australia. ^bDepartment of Chemistry, University of Sheffield, UK. ^cSchool of Chemistry, University of Bristol, UK. E-mail: stuart.batten@sci.monash.edu.au; martin.Duriska@sci.monash.edu.au

We have synthesized a range of new scorpionate ligands with peripheral coordination sites using pyridyl and benzonitrile substituents. These ligands have led to the formation of discrete

neutral moieties, porous and non-porous coordination polymers and large supramolecules [1,2]. Of particular interest is a 'nanoball' structure shown below which was solved using synchrotron data.

The outer diameter of the nanoball is ca. 29 Å and the inner cavity of this structure is ca. 16 Å in diameter and is decorated with potential reactive sites.

[1] Adams H., Batten S. R., Davies G. M., Duriska M. B., Jeffery J. C., Jensen P., Lu J., Motson G. R., Ward M. D., *manuscript in preparation*. [2] Batten S. R., Duriska M. B., *manuscript in preparation*.

Keywords: scorpionates, supramolecular chemistry, coordiantion polymers