Growth and Crystal Structure of Bismuth Octaborate, α-**Bi**₂**B**₈**O**₁₅ <u>Fedor Yu. Zavartsev</u>^a, G. M. Kuz'micheva^b, V. B. Rybakov^c, S. A. Koutovoi^a, I. A. Shcherbakov^a, A. I. Zagumennyi^a, ^aGeneral Physics Institute of RAS. ^bMoscow State Academy of Fine Chemical Technology, ^cMoscow State University. E-mail: fzavart@lsk.gpi.ru

The objects of this search were a study of $Bi_2B_8O_{15}$ crystallization in the melts of near stoichiometric compositions, a determination of bismuth octaborate solid solutions range and a refinement of crystal structure of low-temperature phase of bismuth octaborate, α -Bi₂B₈O₁₅.

The bismuth octaborate crystals were grown from the melts of stoichiometric (20mole% Bi_2O_3 /80 mole% B_2O_3) and near stoichiometric (21.9mole% Bi_2O_3 / 78.1mole% B_2O_3) compositions. The grown crystals of a plate like form were of (5-7) mm in thickness, 27 x 27 mm² in cross-section. Comparison of lattice parameters of grown α -Bi₂B₈O₁₅ crystals (a=4.3191(9), b=22.175(7), c=6.4739(19)Å, β =105.44(2)°, sp.gr. P2₁, z=2) with the data presented in [1, 2] indicates that the phase of non-stoichiometric, Bi₂O₃-rich, composition exists unlike to the α -Bi₂B₈O₁₅ phase studied by authors of [1, 2]. Structure was refined as a racemic twin with components 0.80 and 0.20. Range of solid solutions having the 78.1mol.% B₂O₃ – 84.7mol.% B₂O₃ boundaries exists for the Bi₂O₃·4B₂O₃ compound.

 Teng B., Yu W. T., Wang J. Y., Cheng W. F., Dong S. M., Liu Y. G., Acta Cryst, 2002, C58, i25. [2] Egoryusheva A.V., Kanisheva A.S., Kargin Yu. F., Gorbuova Yu. E., Mikchailov Yu. N., Journ. Inorganic Chemistry, 2002, 47. 1961.

Keywords: bismuth octaborate, crystalline solid solutions, crystal structure