The Bond Valence Model and Point Defects in Langasite Family

Elena Tyunina, G. Kuz'micheva, Lomonosov State Academy of Fine Chemical Technology, Moscow. Russia. E-mail: tyunina_elena@mail.ru

Crystals of langasite structure (La₃Ga₅SiO₁₄ - La₃Ga(1)Ga₃(2) (GaSi)(3)O₁₄) belong to the sp.gr. P321 and have four kinds of cation sites. The La, Ga(1), Ga(2) and (GaSi)(3) ions are located on a decahedral, octahedral, tetrahedral and trigonal-pyramidal sites, respectively.

In this work we demonstrate an analysis of the structure refinements of the langasite family compounds La₃Ga₄(Ga_xSi_{2-x})O₁₄, La₃Ga₄[Ga(Si,Ge)]O₁₄, La₃Ga_{5.5}M_{0.5}O₁₄ c M=Ta, Nb with the bond valence models. The calculation of bond valence (s_{ij}) for cation sites was made by the two methods:

- method of Brese and O'Keeffe: $s_{ij}=\exp[(R_{ij} - d_{ij})/b]$; - method of Brown and Wu: $s_{ij}=(R_i/d_{ij})^{N}$ The calculation of s_{ij} values for cation and anion sites was fulfiled by Pyatenko method: $s_{ij} = k_i/d_{ij}^{n}$; $k_i=v_{kj}/\Sigma d_{ij}^{-n}$ (d_{ij} –cation-anion distance) distance).

With these results, it is possible to confirm the occupancy of the (GaSi)(3) sites by some cations and their correlation, to suppose a presence of cation vacancies in La and Ga(1) sites, to prove a distribution of the Ta and Nb ions into two sites (Ga(1) and (GaSi)(3)) and one site (Ga(1)), respectively.

Keywords: langasite, point defects, bond valence method