PDF and NMR Study of Ordering in the Positive Electrode Material $Li(NiMn)_{0.5}O_2$

Julien Bréger^a, Nicolas Dupré^a, Peter J. Chupas^b, Peter L. Lee^b, Thomas Proffen^c, John B. Parise^a, Clare P. Grey^a, ^aDepartment of Chemistry, SUNY Stony Brook, USA. ^bAdvanced Photon Source, ANL, USA. ^cLos Alamos Neutron Science Center, LANL, USA. E-mail: jbreger@ic.sunysb.edu

The local environments and short-range ordering of $Li(NiMn)_{0.5}O_2$, a potential Li-ion battery positive electrode material^{1,2}, were investigated by using a combination of X-ray and neutron diffraction and isotopic substitution, Li MAS NMR spectroscopy and, for the first time, X-ray and neutron Pair Distribution Function (PDF) analysis, associated with Reverse Monte Carlo (RMC) calculations. $Li(NiMn)_{0.5}O_2$ adopts the $LiCoO_2$ structure and comprises separate Li layers, transition metal (Ni,Mn) layers and O layers.

NMR experiments and Rietveld refinements showed that there is 10% of Li/Ni site exchange. Neutron PDF analysis revealed considerable local distortions in the layers that are not captured in the LiCoO₂ model. Large clusters were built to investigate cation ordering, by performing RMC calculations. Both NMR and RMC were consistent with a non-random distribution of Ni, Mn and Li cations in the transition metal layers. Constraints from both methods showed the presence of short-range order in the transition metal layers comprising LiMn₆ and LiMn₅Ni clusters combined with Ni and Mn contacts that are consistent with those found in some of the proposed structures based on Li₂MnO₃-like ordering of the cations.

[1] Ohzuku T., Makimura Y., Chem. Lett., 2001, 744. [2] Lu Z., MacNeil D. D., Dahn J.R., Electrochem. Solid-State Lett., 2001, 4, A191.

Keywords: lithium batteries, pair distribution function, NMR