Crystal structures of $Rb_2(C_2O_4)$ ·H₂O and $Tl_2(C_2O_4)$: application of valence matching rule

<u>Takuya Echigo</u>^a, Mitsuyoshi Kimata^b, Atsushi Kyono^b, ^aCourse of Geoscience, Master's Program in Science and Engineering, University of Tsukuba. ^bEarth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba. E-mail: echigo@arsia.geo.tsukuba.ac.jp

Crystal structures of Rb₂(C₂O₄)·H₂O (monoclinic, space group C2/c, a = 9.617(6)Å, b = 6.353(5)Å, c = 11.010(8)Å, $\beta = 109.46(3)^\circ$, V = 634.2(8)Å³, Z = 4, R1 = 0.026, for 2646 reflections) and Tl₂(C₂O₄) (triclinic, *P*-1, a = 6.623(4)Å, b = 6.674(3)Å, c = 5.854(4)Å, $a = 90.031(35)^\circ$, $\beta = 89.967(36)^\circ$, $\gamma = 80.745(40)^\circ$, V = 255.3(3)Å³, Z = 2, R1 = 0.082, for 1499 reflections) were determined using an imagingplate diffractometer and a four-circle diffractometer, respectively (MoK α radiation, graphite monochromator).

Incorporation of rubidium cations (Rb⁺) with oxalic anions anions $(C_2O_4^{2-})$ establishes two-dimensional layer structure; water molecule $(H_2O)^0$ intercalates into the layers. Conformation of thallium cations (Tl⁺) to seven oxygen atoms of oxalic anions sets up the two-dimensional layer structure, which is similar with that of rubidium oxalate. Except for water molecule, thallium oxalate is isotypic to rubidium oxalate (this study) and potassium oxalate $K_2(C_2O_4) \cdot H_2O[1]$. Bond valence analysis of these compounds reveals that $(H_2O)^0$

Bond valence analysis of these compounds reveals that $(H_2O)^\circ$ moderates the Lewis basicity of oxalic anion $(C_2O_4^{-2:} 0.167)$. This moderated Lewis basicity matches the Lewis acidity of potassium and rubidium cation (K⁺: 0.126, Rb⁺: 0.124)[2], respectively: the valence-matching principle is satisfied.

[1] Sequeira A., Srikanta S., Chidambaram R. Acta Cryst., 1970, B26, 77. [2]
Brown I. D. Acta Cryst., 1988, B44, 545.

Keywords: oxalate mineral, bond-valence, hydrogen bonds