

Direct Observation of a H₂ Molecule Swallowed by Open-mouthed C₆₀

Hiroshi Sawa^a, Yasujiro Murata^b, Michihisa Murata^b, Koichi Komatsu^b, ^aPhoton Factory, High Energy Accelerator Research Organization (KEK), ^bICR, Kyoto University, Japan. E-mail: hiroshi.sawa@kek.jp

Various types of endohedral fullerenes are known to date. However the metallofullerenes are generally produced by arc-discharge method, but the use of such extremely drastic conditions is apparently not suitable for encapsulation of unstable molecules or gases. We recently succeeded in incorporation of a H₂ molecule in 100% into a derivative of an open-cage C₆₀ [1]. In order to observe the endohedral H₂ molecule directly, the X-ray diffraction analysis using synchrotron radiation were carried out. We observed a single H₂ molecule encapsulated in fullerene cage using structure analysis and maximum entropy method [2]. This H₂ molecule is floating inside of the hollow cavity and considered to be completely isolated from the outside (Fig.1).

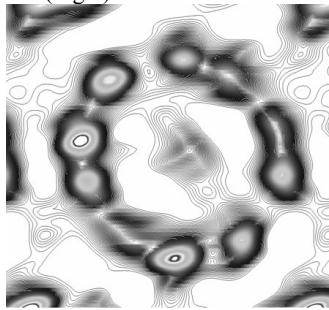


Fig.1. The MEM electronic density distributions of H₂ endohedral open-cage C₆₀.

[1] a) Murata Y., Murata M., Komatsu K., *J. Am. Chem. Soc.*, 2003, **125**, 7152-7153; b) Murata Y., Murata M., Komatsu K., *Chem. Eur. J.*, 2003, **9**, 1600-1609. [2] Sawa H., Wakabayashi Y., Murata Y., Murata M., Komatsu K., *Angew. Chemi.*, 2005, 13.

Keywords: fullerenes, synchrotron x-ray diffraction, single-crystal structure analysis