Structures of New Molecular Conductors Based on Functionalized Organic Donors

Leokadia Zorina^a, Rimma Shibaeva^a, Salavat Khasanov^a, Sergey Simonov^a, Lyudmila Kushch^b, Eduard Yagubskii^b, Cecile Meziere^c, Stephane Baudron^c, Patrick Batail^c, Enric Canadell^d, ^aInstitute of Solid State Physics, RAS, Chernogolovka, Russia. ^bInstitute of Problems of Chemical Physics, RAS, Chernogolovka, Russia. ^cChimie Inorganique, Materiaux et Enterfaces, CNRS-Universite d'Angers, France. ^dInstitut de Siencia de Materials de Barcelona (CSIC), Bellaterra, Spain. E-mail: zorina@issp.ac.ru

Functionalized organic donors are remarkable for the ability to form hydrogen bonds of cation cation and cation anion types, which can effectively control the crystal architecture of molecular conductors [1]. Hydrogen bond network is well developed in the crystals of four new radical cation salts based on amide functionalized EDT-TTF donors EDT-TTF-CONH₂ (D1) and EDT-TTF-(CONH₂)₂ (D2) [2].

Semiconducting α' -(D1)₄[FeNO(CN)₅] (1), α' -(D1)₄[Co(CN)₆] (2), β -(D1)₆[Fe(CN)₆] (3) and (D2)₄[FeNO(CN)₅]NB (4) salts have been prepared and characterized by X-ray single crystal diffraction experiments and band structure calculations. (D1)₂-dimers or (D2)_n-extended zigzag chains of donors connected through functional groups are found to be stable structural motifs in 1-4. The 1 and 2 salts are isostructural but contain anions of different charge, -2 and -3, respectively. The degree of charge transfer affects on electronic structures of the crystals that results in changing their transport properties: $\sigma_{RT}(2)/\sigma_{RT}(1)$ =50. In the crystals 4 a superstructure with incommensurate vector \pm (0.5, 0.3, 0.2) has been observed and studied.

[1] Fourmigue M., Batail P., *Chem. Rev.*, 2004, **104**, 5379. [2] Shibaeva R., Khasanov S., Zorina L., et al., *J. Phys. IV France*, 2004, **114**, 481.

Keywords: x-ray analysis, organic conductors, layered structures