Ponomarevite, K₄Cu₄OCl₁₀, a Naturally occurring Mineral with a [Cu₄O] Core –Ancestor of Many Synthetic Cluster Compounds Herbert Boller, Rahima Dilshad, Kurt Klepp, *Institut für Allgemeine und Anorganische Chemie, Johannes-Kepler-Universität-Linz, Linz, Austria.* E-mail: Herbert.Boller@jku.at.

The crystal structure of the title compound was determined by de Boer et al.[1]. Later the mineral Ponomarevite has been identified in fumarole deposits in Kamchatka, Russia, its crystal structure being essentially identical with that of the synthetic compound [2]. The Russian authors, however, appear to have not known the earlier work.

Ponomarevite is composed of $\text{Cu}_4\text{OCl}_{10}$ clusters with a Cu_4 tetrahedron centered by oxygen. The two-valent copper has fivefold distorted trigonal-bipyramidal coordination by one terminal and three bridging chlorine atoms and the centering oxygen.

Many other related compounds with clusters of the type $[Cu_4OCl_6X_4]$, with X being always terminal and mainly organic or halogen, have been reported without making reference to Ponomarevite. All these cluster compounds are in principle very interesting from a magnetic point of view.

In this paper the crystal structure of the new compound $[Me_4N]_4[Cu_4O(OCN)_{10}]$ is reported (a=16.632, b=12.632, c=20.557Å, β =101.34, SG. $P2_1/a,$ Z=4). In this compound the cluster differs from all the ones known by having only two cyanato ligands with oxygens bridging opposite edges of the $[Cu_4O]$ tetrahedron, while the other eight cyanato groups are terminal. The copper has thus a quadratic coordination by four oxygens.

[1] De Boer J.J. et al., *Acta Cryst.*, 1972, **B28**, 3436. [2] Semenova T. F.et al., Doklady Akademii Nauk SSSR 1989, **304**, 427.

Keywords: mineral chemistry, copper, complexes