Growth and Properties of $KTiOPO_4$ Single Crystals doped with Er and Nd

Elena Kharitonova^a, Valentina Voronkova^a, Vladimir Yanovskii^a, Valerii Smirnov^b, ^aPhysics Department, Moscow State University. ^bGeneral Physics Institute, Moscow, Russia. E-mail: harit@polly.phys.msu.ru

KTiOPO₄ (KTP) single crystals are of great interests due to their ferroelectric and nonlinear optical properties. Last time the attention is given to the investigation of KTP-family crystals doped with rare earth and codopant ions as the material for self-doubling [1,2].

In the present work single crystals of KTP codoped with Ln = Er, Nd and Me = Nb, Ta, Ba, Ca, Mg, Bi, Al, Si, KCl were grown by means of flux method and some properties were investigated.

The investigations show that an addition of Nb and Ba leads to decreasing of KTP:Ln:Me optical quality, whereas the quality increases with KCl and Bi and does not markedly depends on Ln.

Maximum luminescence intensity was observed in KTP:Er:Nb crystals. Life time of $^4F_{3/2}Nd^{3+}$ and $^4I_{13/2}Er^{3+}$ has been found as 250 μs and 6 ms for KTP:Nd and KTP:Er respectively. In KTP:Ln:Me the life time changes in the area of 1 - 7 ms for $^4I_{13/2}Er^{3+}$ and 180 - 300 μs for $^4F_{3/2}Nd^{3+}$ depending on the codopant of ion Me.

The presence of Ln ions in KTP:Ln:Me crystals does not strongly affect on ferroelectric phase transition temperature, but suppresses the dielectric permittivity peak caused by the above-named transition.

[1] Sole R., Nikolov V., Koseva I., et al., *Chem. Mater.*, 1997, **9**, 2745. [2] Carvajal J. J., Nikolov V., Sole R., et al., *Chem. Mater.*, 2002, **14**, 3136.

Keywords: crystal growth, KTiOPO₄, ferroelectrics