Crystal Structure of the Superconducting Layered Cobaltate $Na_xCoO_2\cdot yD_2O$

Dimitri N. Argyriou^a, P.G. Radaelli^b, C. J. Milne^a, N. Aliouane^{a*}, L.C. Chapon^a, A. Chemseddine^a, J. Veira^a, S. Cox^c, N. D. Mathur^c, P. A. Midgley^c, ^aHahn-Meitner-Institut, Berlin, Germany. ^bISIS Facility, Rutherford Appleton, U. K. ^cDepartment of Materials Science and Metallurgy, University of Cambridge, U.K. E-mail: argyriou@hmi.de

Superconductivity in layered Na_xCoO₂·yH₂O occurs in CoO₂ sheets that have a quasi 2D triangular symmetry, analogous to that of geometrically frustrated systems. This is in stark contrast to the well know perovskite high-Tc cuprates, and makes the determination of the structural details of this novel superconductor essential in the understanding of its properties. However, due to the complexity of the intercalation of the H₂O between Na and CoO₂ sheets, details of the crystal structure of these materials has remained ambiguous. We have used electron and neutron powder diffraction to elucidate the structural properties of superconducting Na_xCoO₂·yD₂O over a wide compositional range. Our measurements show that superconducting samples exhibit a number of supercells ranging from 1/3a* to 1/15a*, but the predominant modulation, observed also in the neutron data, is a double hexagonal cell with dimensions 2a x 2 a x c. Rietveld analysis reveals that D₂O is inserted between CoO₂ sheets as to form a layered network of NaO₆ triangular prisms. Our model removes the need to invoke a 5K superconducting point compound and suggests that a solid solution of Na is possible within a constant amount of water y.

Keywords: oxide superconductors, powder neutron diffraction, bound water