Understanding how the Alzheimer's Amyloid Presursor Protein binds Copper Ions

<u>Geoffrey K.-W. Kong</u>¹, William J. Mc Kinstry¹, Julian J. Adams¹, Denise Galatis², Colin L. Masters², Kevin J. Barnham², Roberto Cappai², Michael W. Parker^{1,2}, ¹St. Vincent's Institute, Fitzroy, VIC, Australia. ²Dept. of Pathology, The University of Melbourne, Australia. E-mail: gkong@svi.edu.au

Alzheimer's disease is a debilitating neurodegenerative disorder. Soluble oligomers of A β peptides are neurotoxic and thought to trigger the development of the disease. The interaction between copper (Cu) ions and the transmembrane amyloid precursor protein (APP) in the brain may play a key role in modulating the pathogenesis. The binding of extracellular Cu²⁺ to APP in vitro lowers the processing of APP into A β When Cu²⁺ is supplemented in their diet, transgenic mice over-producing A β had improved survival and decreased soluble A β level. However, the administration of significant amounts of Cu²⁺ in humans is likely to cause toxic side-effects. Structural studies of Cu²⁺ mimetics for use in treating the disease.

The APP interacts with and reduces Cu^{2+} ions through the extracellular copper binding domain (CuBD). The crystal structure of CuBD in metal-free (apo) form is determined to 0.85 Å resolution using X-ray diffraction data at a synchrotron. The structure of CuBD bound with Cu^{2+} was obtained from apo crystals soaked in a solution containing CuCl₂, and a pursuant reduction step generated the Cu⁺bound structure. In both cases, the Cu ion is coordinated to His147, His151, Tyr168 and a water molecule, in a distorted square planar geometry. As the water ligand might represent an amino acid ligand from another APP domain or between APP molecules, X-ray absorption spectroscopy of Cu binding in solution is being pursued while longer APP constructs covering the CuBD are studied and crystallised. **Keywords: macromolecular crystallography, metal ions in biology, Alzheimer's proteins**