14-Electron Metal Complexes Stabilized by $M{\cdots}\eta^3\text{-}H_2C$ Agostic Interactions

Walter Baratta^a, Carlo Mealli^b, Eberhardt Herdtweck^c, Andrea Ienco^b, Sax A. Mason^d, Pierluigi Rigo^a, Sergio Stoccoro^e, ^aUniversità di Udine, Italy. ^bICCOM-CNR, Florence, Italy. ^cTechnische Universät München, Germany. ^dILL, Grenoble, France. ^eUniversità di Sassari, Italy. E-mail: inorg@dstc.uniu.it

The coordination of inert C-H bonds to a transition metal center is of fundamental interest for stoichiometric and catalytic reactions, with particular regard to the problem of alkane functionalization via C-H bond activation. Unfortunately, information on the nature of the primary adduct is still very scarce, since saturated hydrocarbons are notoriously very poor ligands.

By use of the phosphine $PR_2(2,6-Me_2C_6H_3)$ (R = Ph, Cy), bearing two methyl groups in the *ortho* position, rare examples of 14-electron Ru(II) and Pt(II) complexes have been isolated [1]. Solid state studies, using both X-ray and neutron diffraction techniques, reveal that nonclassical M··· η^3 -H₂C agostic interactions take place and this result is in agreement with a structural survey on Cambridge databank, data in solution and a computational analysis. The reactivity of these complexes is reported, as well as the use of the Ru system as precursor for the preparation of highly active transfer hydrogenation catalysts.

[1] a) Baratta W., Mealli C., Herdtweck E., Ienco A., Mason S. A., Rigo P., J. Am. Chem. Soc., 2004, **126**, 5549; b) Baratta W., Herdtweck E., Rigo P., Angew. Chem. Int. Ed., 1999, **38**, 1629; c) Baratta W., Stoccoro S., Doppiu A., Herdtweck E., Zucca A., Rigo P., Angew. Chem. Int. Ed., 2003, **42**, 105.

Keywords: agostic interactions, C-H activation, neutron structural determination