Spin State and Stereochemistry in Tetracoordinate Complexes of d^n Transition Metals

Jordi Cirera, Eliseo Ruiz, Santiago Alvarez, Departament de Química Inorgànica and Centre de Recerca en Química Teòrica, Universitat de Barcelona, Barcelona, Spain. E-mail: jordi.cirera@qi.ub.es

We will present a theoretical study of the structural preferences of tetracoordinate transition metal compounds with d^n electronic configuration. The structural choice of tetracoordinate transition metal compounds has been established recently from the available experimental structural data with the help of the Continuous Shape Measures (CShM)[1] metodology. In that work, different structural preferences were found for the tetracoordinate transition metal compounds as a function of the electron configuration of the metal[3].

Using the Densitity Functional Theory with the B3LYP hybrid functional we have calculated the potential energy surfaces for simple $[M(CH_3)_4]$ models in different spin states of all the dⁿ electron configurations. By using the CShM methodology we analyze the distribution of more than 12000 structures along the minimal distortion pathway[2] for the tetrahedron to square interconversion, and find that it mirrors the calculated potential energy curves for each dⁿ family of complexes.

Zabrdosky H., Peleg S., Avnir D., J. Am. Chem. Soc., 1992, 114, 7843. [2]
Cirera J., Alemany P., Alvarez S., Chem.-Eur. J., 2004, 10, 190. [3]
Casanova D., Cirera J., Llunell M., Alemany P., Avnir D., Alvarez S., J. Am. Chem. Soc., 2004, 126,1755.

Keywords: continuous shape measures, spin state, transition metal complexes