Structure and Emission Properties of Erbium Quinolinolate Complexes

<u>Flavia Artizzu</u>^a, P. Deplano^a, L. Marchio^b, M. L. Mercuri^a, L. Pilia^a, A. Serpe^a, F. Quochi^c, R. Orrù^c, A. Mura^c, G. Bongiovanni^c, ^aDCIA, Università di Cagliari. ^bDCGIAC, Università di Parma. ^cDip Fisica, Università di Cagliari, Italy. E-mail: f.artizzu@unica.it

We have recently reported the first combined optical and structural investigation of the water free Er-quinolinolate complex [1], a prototype organo-lanthanide system for 1.5-µm telecom applications. The complex has a trinuclear structure (Er_3Q_9) which provides the Er metals with an octa-coordination by the organic ligand and prevents solvent and water molecules from entering the lanthanide coordination sphere. By using the 5,7-dichloro-8-hydroxyquinoline (ClQH) the new [ErCl(ClQ)₂(ClQH)₂] compound has been obtained. The Er intrinsic deactivation occurs in this case with a time constant which is approximately twice the value obtained for Er₃Q₉ (4.0 vs 2.2 us) but still three orders of magnitude faster than the erbium radiative lifetime. Structural data have been used to calculate the transfer time from the Er ions to the C-H groups of the ligand in the framework of the Förster's theory and the obtained decay times are in agreement with those experimentally found. Thus the C-H groups sitting in the Er inner coordination sphere represent a very severe limit to the IR emission yield of organo-Er complexes. Ligands which do not bear CH or OH groups appear to be promising to prepare complexes with enhanced emission efficiency.

[1] Artizzu F., et al., Inorg. Chem, 2005, 44, 840-842.

Keywords: luminescent compound, structure, lanthanides