Molecule-Mineral Inner-Surface Interactions in Nanoporous Silicates

<u>Charles A. Geiger</u>^a, Boris A. Kolesov^b, ^aInstitut für Geowissenschaften der CAU, Kiel, Germany. ^bInstitute of Inorganic Chemistry, Novosibirsk, Russia. E-mail: chg@min.uni-kiel.de

We have carried out single-crystal and powder Raman and studies of zeolites, SiO_2 -clathrates and other silicate structure types with small nanopores (beryl, cordierite) to investigate the nature of inner-surface molecule-crystal interactions and the role of hydrogen bonding.

Bikitaite has a H-bonded H_2O chain along [010] termed 'onedimensional ice'. The molecules are ordered, whereby one H atom per molecule is unbonded and the other is H-bonded. With increasing temperature, the H-bonding weakens continuously until the chain 'breaks' and isolated H_2O molecules are present.

Melanophlogite has quasi-free N₂, CO₂ and CH₄ molecules, but no H₂O, which partition between the [5¹²] and [5¹²6²] cages. The molecules are orientationally disordered in the cavities and they have only weak dispersion interactions with the SiO₂-crystal framework. However, the incorporation of molecules is necessary to allow the SiO₂ framework to condense.

Cordierite and beryl contain quasi-free CO_2 molecules, as well as H_2O , in small cavities. The CO_2 molecules are orientated parallel to the crystallographic *x*-axis. The H_2O molecules have their H-H vector parallel to the *z*-axis in alkali-free crystals and are dynamically disordered about the *z*-axis. They show weak H-bonding with their frameworks.

Keywords: nanopores, H-bonding, vibrational spectroscopy