Structural Characterization of Archaeal Elongation Factors

Adriana Zagari^{a,d}, A. Ruggiero^a, V. Granata^a, G. Raimo^b, M. Masullo^c, P. Arcari^a, L. Vitagliano^d, ^aUniversità "Federico II", Napoli. ^bUniversità del Molise, Isernia. ^cUniversità "Magna Graecia", Catanzaro. ^dIBB-CNR, Napoli, Italy. E-mail: zagari@unina.it

Elongation factors (EF) are enzymes that play a major role in protein biosynthesis. However, limited structural information is available on elongation factors isolated from archaea/eukarya [1,2]. We have undertaken structural studies on elongation factors isolated form the hyperthermophilic archaeon Sulfolobus solfataricus. The interest for these proteins is twofold. Indeed, they represent a valuable system to investigate structure/function relationships in archaeal/ eukaryal elongation factors and to study structure/stability correlations. Our previous investigations have provided insight into the function of SsEF-1a and into the role played by the magnesium in the nucleotide exchange process. Our data also provided a preliminary mechanism for the exchange process in EF-1 α In order to better define this mechanism, we are currently performing structural investigations on the exchange factor SsEF-1BNative and MAD data have been collected and the solution of the structure is in progress. Furthermore, the complex between SsEF-1 α and SsEF-1 β has been prepared for crystallographic investigations. Finally, a combined analysis by CD spectroscopy and molecular modeling has contributed to highlight the structural determinants of SsEF-1athermostability.

 Vitagliano L., Masullo M., Sica F., Zagari A., Bocchini V., *Embo. J.*, 2001, 20, 5305. [2] Vitagliano L., Ruggiero A., Masullo M., Cantiello P., Arcari P., Zagari A., *Biochemistry*, 2004, 43, 6630.

Keywords: elongation cycle, protein biosynthesis, thermostability