In Field Incommensurate-Commensurate Phase Transition in the Multiferroic $TbMnO_3$

<u>Nadir Aliouane</u>, D.N. Argyriou^a, J. Strempfer^b, S. Langesell^a, C.J. Milne^{a,c}, M.v. Zimmerman^c, ^a*HMI Berlin, Germany.* ^b*MPI-FSK Stuttgat.* ^c*Hasylb-Hamburg, Germany.* E-mail: aliouane@hmi.de

Orthorhombic TbMnO₃[1] is a multiferroic compound that exhibits a flop in the electrical polarization from c to the a-direction with a applied magnetic field either along a or b axis. We have studied the magnetic field dependence of the incommensurate wave vectors $(q_{Mn} q_{Tb})$ associated with the polarization and the magnetic ordering by neutron and x-ray single crystal diffraction with H||a and b. The polarization flop transition corresponds to first-order transition from an incommensurate multi-q-structure to a commensurate single q-structure with q=1/4 at H||a, H>9T T_C~28K. In our X-ray measurements, the induced magnetic elastic coupling is observed as a structural modulation at twice the magnetic wavevector ($2q_{Mn,Tb}$). The temperature and field dependence of the magnetic and superlattice reflections are consistent with a soliton formalism which predicts a stable commensurate single q=1/4-phase.

[1] Kimura et al., *Nature*, 2003, **426**, 55. **Keywords: 1/4-phase, polarization flop, soliton formalism**