Compression of Oxygen Vacancy Type Al-bearing MgSiO₃ Perovskite

Yasuo Ohishi^{a,b}, Kei Hirose^c, Hiroshi Kojitani^d, Tetsu Watanuki^e, Masaki Takata^{a,b}, ^aJapan Synchrotron Radiation Research Institute, Hyogo. ^bCREST-JST. ^cDepartment of Earth and Planetary Science, Tokyo Institute of Technology. ^dDepartment of Chemistry, Gakushuin University, Tokyo. ^eJapan Atomic Energy Research Institute, Hyogo, Japan. E-mail: ohishi@spring8.or.jp

MgSiO₃ perovskite is believed to be a dominant constituent of the Earth's lower mantle. Experimental results on the effect of Al on the compressibility of MgSiO₃ perovskite have been pretty controversial. Two kinds of the Al substitution mechanisms are expected: $2AI^{3+} = Mg^{2+} + S^{i4+}$ and $2AI^{3+} = 2Si^{4+} +$ (as a vacancy site) $O^{2-}[1]$. Theory predicts that the latter mechanism significantly increases the compressibility [2].

Recently, Kojitani et al (2005) demonstrated the structural differences between these two types of Al-bearing $MgSiO_3$ perovskite on the basis of Rietveld analyses. In this work, the volume compression measurements were performed on the oxygen vacancy type Al-MgSiO3 perovskite by using synchrotron radiation x-rays. Data were collected under hydrostatic conditions using helium pressure transmitting medium. Preliminary results show that the isothermal bulk modulus is reduced due to the incorporation of Al_2O_3 in perovskite with oxygen vacancy.

[1] Navrotsky A., Shoenitz M., Kojitani H., Xu H., Zhang J., Weidner D. J., Jeanloz R., *J. Geophys. Res.*, 2003, **108-B7**, ECV2-1. [2] Yamamoto T., Yuen D.A., Ebisuzaki T., *Earth Planet. Sci. Lett.*, 2003, **206**, 617.

Keywords: perovskite, high pressure mineralogy, synchrotron x-ray diffraction