The thermoelastic properties of the newly found post-perovskite polymorph of MgSiO₃, more stable than the Pbmn-perovskite phase at conditions close to those expected in Earth's D'' region, has been investigated by first-principles and contrasted with those of the perovskite phase. We predict the major seismic trends such as velocity discontinuities, ratios of velocities and density anomalies, and anisotropy in aggregates with preferred orientation that should occur in the presence of this phase change. Consequences of this model mineralogy for the D'' region will be discussed.

Research supported by JSPS, NSF/EAR 0135533 (COMPRES), 0230319, and NSF/ITR 0428774.

Keywords: phase transition, mantle mineralogy, thermoelasticity