

Bioinformatics Approach to Characterization of SGNH/GDSL-hydrolases

Biserka Kojić-Prodić^a, Filip Kovačić^a, Ivana Lešić^a, Susanne Wilhelm^b, Sanja Tomic^a, Karl-Erich Jaeger^b, ^aRudjer Bošković Institute, 10002-Zagreb, POB 180, Croatia. ^bInstitute for Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Research Centre Jülich, D-52428 Jülich, Germany. E-mail: kojic@irb.hr

The present analysis is aimed to recognize structural elements of SGNH/GDSL family of enzymes with a novel folding type using bioinformatics tools on data of primary and secondary structures. Out of 770 proteins sequences deposited, data of seven different structures of GDSL hydrolases are solved, only; those of the best resolution were selected among twenty available in PDB (including mutants): rhamnogalacturonan acetyleserase from *Aspergillus aculeatus*, thioesterase I from *E. coli*, platelet-activating factor acetylhydrolase IB γ from *Bos taurus*, platelet-activating factor human acetylhydrolase IB β , and esterase from *Streptomyces scabies*. Two novel enzymes of our interest, esterase from *Pseudomonas aeruginosa* and lipase from *Streptomyces rimosus*, were included in the analysis and compared with GDSL hydrolases of known three-dimensional structures. These two enzymes were recognized as the members of the SGNH/GDSL family with a fold being different from the common α/β hydrolase fold. Alignment of amino acid sequences of SGNH/GDSL hydrolases studied reveals similarity about 20%. However, four blocks of conserved sequence, with one conserved residue in each block (S,G,N,H) are common characteristics.

Keywords: databases, bioinformatics, novel hydrolase fold