Low Temperature Structural Investigations of the J_1 - J_2 Model System VOMoO₄

Fabienne Duc, Sabine Gonthier, Centre d'Elaboration de Matériaux et d'Etudes Structurales, Toulouse, France. E-mail: fduc@cemes.fr

Frustrated magnets based on transition metal oxides have become subjects of many theoretical and experimental studies in the last ten years [1, 2]. One of the most widely studied model systems is the socalled J_1 - J_2 model, i.e. the spin-1/2 Heisenberg antiferromagnet on a square lattice with competing nearest (J_1) and next-nearest (J_2) neighbor antiferromagnetic interactions. Thanks to their structure, Li₂VOSiO₄ and Li₂VOGeO₄ [3] are shown to be the first prototypes of this frustrated two-dimensional system [4, 5] and have enabled to check experimentally several theoretical predictions in the region of the phase diagram in which $J_1 \approx J_2$. This work has been extended these last two years to the closely related system VOMoO₄ [6]. VOMoO₄ crystallizes in the tetragonal space group P4/n with 2 formula units per cell, the spin-1/2 V⁴⁺ ions forming a network of VO₅ square pyramids, sharing corners with MoO₄ tetrahedra. The main difference with respect to Li₂VOSiO₄ and Li₂VOGeO₄ (space group P4/nmm) is the absence of Li to separate the layers of XVO₅ (X = Si, Ge or Mo).

This contribution will give an overview of recent results obtained by low temperature x-ray and neutron diffraction on the VOMoO₄ phase. An anomalous evolution of the lattice parameters [7] which could be related to its magnetic properties was clearly revealed.

[1] Chandra P., et al., *Phys. Rev. Lett.*, 1990, 64, 88. [2] Capriotti L., *Int. J. of Mod. Phys.* B, 2001, 15, 1799. [3] Millet P., et al., *Mater. Res. Bull.*, 1998, 33, 1339. [4] Melzi R., et al., *Phys. Rev. Lett.*, 2000, 85, 1318. [5] Melzi R., et al., *Phys. Rev. B*, 2001, 64, 024409. [6] Eick H. A., et al., *Acta Chem. Scand.*, 1966, 20, 722. [7] Bombardi A., et al., *Phys. Rev. Lett.*, 2005, *submitted.*Keywords: lattice anomalies, square lattice, frustration