Structual Evidence of pH-induced Changes of the Reduction Potential of Mavicyanin from Zucchini

Kouji Kanbayashi^a, Yong Xie^a, Tsuyoshi Inoue^a, Yoichi Miyamoto^a, Hiroyoshi Matsumura^a, Kunishige Kataoka^b, Kazuya Yamaguchi^b, Masaki Nojini^b, Shinnichiro Suzuki^b, Yasushi Kai^a, "Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Japan. Department of Chemistry, Graduate School of Science, Osaka University, Japan. E-mail: kamba@chem.eng.osaka-u.ac.jp

Mavicyanin, a glycosylated protein isolated from Cucurbita pepo medullosa (zucchini) is a member of the phytocyanin subfamily containing one polypeptide chain of 109 amino residues and an unusual type-I Cu site in which the copper ligands are His⁴⁵, Cys⁸⁶, His⁹¹, and Gln⁹⁶. The crystal structures of oxidized and reduced mavicyanin were determined at 1.6 and 1.9 Å resolution, respectively. Mavicyanin has a core structure of seven polypeptide β-strands arranged as a β -sandwich organized from two β -sheets, and the structure considerably resembles that with stellacyanin from cucumber (CST) or cucumber basic protein (CBP). A flexible region was not observed from superimposition of the oxidized and reduced mavicyanin structures. However, the residue of Thr¹⁵ rotated 60.0 degrees and O-γ1-Thr¹⁵ moved from a distance of 4.78 to 2.58 Å toward the ligand Gln⁹⁶ forming a new hydrogen bond between O-γ1-Thr¹⁵ and ε-O-Gln⁹⁶ upon reduction and changing, significantly altered the coordination structure containing Gln⁹⁶. It has been proposed that the reorganization of copper coordination geometry above pH 8 aroused reduction potential decreased [Battistuzzi et al. (2001) *J. Inorg. Biochem.*83, 223-227]. The rotation of Thr¹⁵ and the hydrogen bonding with the ligand Gln⁹⁶ may provide structural evidence for the decrease of the reduction potential at high pH.

Keywords: crystal structure determination, blue copper proteins, structure comparison