Design and Synthesis of Co-crystals: From Molecular Sense to Supramolecular Sensibility

Christer B. Aakeröy, Department of Chemistry, Kansas State University, Manhattan, KS, 66506, U.S.A. E-mail: aakeroy@ksu.edu

What is most likely going to happen when a homogeneous solution containing two different molecular solutes is allowed to evaporate to dryness? Unless a chemical reaction driven by the formation of covalent bonds takes place between the two solutes one would, as a rule, expect the appearance of two separate molecular solids. This is a manifestation of the inherent structural selfishness of molecules, something that is relied upon every time recrystallization is employed as a method of purification. Recrystallization processes are essential in most covalent synthetic procedures and are performed on a regular basis in every synthetic laboratory. In the supramolecular laboratory, however, the very same process also provides an opportunity to move in the opposite direction – a co-crystallization is a deliberate attempt at bringing together different molecular species in one crystalline lattice without making or breaking covalent bonds. Recrystallization and co-crystallization processes are, in essence, only distinguishable by their intents. The goal of the former is a homomeric product, the goal of the latter is a heteromeric product. Since the odds are stacked firmly in favor of a homomeric product, how do we go about developing reliable and versatile synthetic methods for the directed assembly of co-crystals? This presentation will attempt to answer the question by outlining several modular hydrogen-bond driven strategies for the design and synthesis of binary and ternary supermolecules and co-crystals.

Keywords: hydrogen bonds, co-crystals, molecu1ar recognition