Structure of the Intermediates in the Myoglobin-peroxide Reaction

Hans-Petter Hersleth^a, Takeshi Uchida^b, Thomas Teschner^c, Åsmund K. Røhr^a, Volker Schünemann^c, Kristina Nilsson^d, Ya-wen Hsiao^d, Thomas H. Rod^d, Alfred X. Trautwein^c, Ulf Ryde^d, Teizo Kitagawa^b, Carl Henrik Görbitz^a, K. Kristoffer Andersson^a, ^aUniversity of Oslo, Dept. of Chemistry & Molecular Bioscience, Norway. ^bOkazaki National Research Institutes, Japan. ^cMedical University of Lübeck, Germany. ^dLund University, Sweden. E-mail: hphersle@kjemi.uio.no

The biological conversions of O_2 and peroxides to water as well as certain incorporations of oxygen atoms into small organic molecules can be catalyzed by metal-ions in different clusters or cofactors. The catalytic cycles of these reactions pass through similar metal-based complexes. We have previously reported high resolution structures of the myoglobin compound II intermediate at pH 5.2 [1], and the state has been confirmed by microspectrophotometry in the pH range 5.2 to 8.7. These structures show a relatively long Fe…O distance of 1.9 Å compared to the 1.6 Å distance of the commonly proposed oxo-ferryl [Fe^{IV}=O] species. This long Fe…O bond is supported by the newly observed Raman Fe-O mode below 700 cm⁻¹. Quantum refinement best fit either a Fe^{III}OH⁻ or a Fe^{IV}OH⁻ state [2], while the Mössbauer spectroscopy indicates a Fe^{IV}-state. From compound II we were able to generate compound III (an oxy-complex). This intermediate was reduced by the synchrotron radiation giving an equivalent of compound 0 (Fe^{III}-peroxide) for which we have solved the structure. The different states were confirmed by microspectrophotometry.

Hersleth H.-P., Dalhus B., Görbitz C.H., Andersson K.K., *J. Biol. Inorg. Chem.*, 2002, **7**, 299-304.
Nilsson K., Hersleth H.-P., Rod T.H., Andersson. K.K., Ryde U., *Biophys. J.*, 2004, **87**, 3437-3447.

Keywords: metalloproteins, crystallography, spectroscopy