Phase Transition and Structures of the Phosphate Zn_{0.50}**Ti**₂(**PO**₄)₃ <u>Jean-Pierre Chaminade</u>^a, Abdelsam El Bouari^b, Abdelaziz El Jazouli^b, Stanislas Péchev^a. Eric Lebraud^a, Pierre Gravereau^a, ^aICMCB-CNRS, University of Bordeaux1, Pessac, France. ^bLCMS, Faculté des Sciences Ben M'Sik, Casablanca, Maroc. E-mail: chamin@icmcbbordeaux.cnrs.fr

Compounds of general formula $M^{II}_{0.5}M^{IV}(PO_4)_3$ with $M^{II} = Mg$, Mn, Fe, Co, Cu, Cd, Ca, Sr, Pb and $M^{IV} = Ti$, Zr crystallize with either a Nasicon-type structure or a Sc₂(WO₄)₃- type structure, depending on the size of the M^{II} element [1]. Temperature dependent XRD study of Zn_{0.5}Ti₂(PO₄)₃ reveals a reversible $\alpha \rightarrow \beta$ phase transition around ~400°C.

Single crystals of the α phase have been obtained with cell parameters, a=14.652(2)Å, b=8.602(1)Å, c=16.930(2)Å, \beta=125.89(1)° and V=1728.7(1)Å³. The single crystal structure was solved in the non standard space group P2₁/a (referring to the Fe₂(MoO₄)₃ study [2]) with R₁=0.059 and wR₂= 0.090.

Diffraction data of the β phase were collected at 500°C on a Philips PW 1050 equipped with an Anton Paar furnace. X-ray diffraction pattern of this powder can be indexed in the P2₁/n monoclinic cell: a=11.918(5)Å; b=8.610(4)Å, c=8.506(4)Å; β =90.37(3)°; V=873.8(1)Å³ referring to the Sc₂(WO₄)₃ study [1]. This structure type was confirmed by Rietveld refinement (R_B= 0.043, R_{wp}=0.076, R_P=0.053). The α phase can be considered as a superstructure of the β one with an ordering of zinc atoms and vacancies along b direction.

[1] Jouannaux A., Verbaere A., Piffard Y., Fitch A. N., Kinoshita M., *Eur. J. Solid State Inorg. Chem.*, 1991, **28**, 683. [2] Chen H. Y., *Mat. Res. Bull.*, 1979, **14**, 1583.

Keywords: phosphates, phase transition, crystal structures