Extraordinary Negative Thermal Expansion in the Smallest Chiral Amino Acid, Alanine

<u>Heloisa N. Bordallo</u>^a, Dimitri N. Argyriou^b, Jörg Strempfer^c, Mariette Barthès^d, Françoise Dénoyer^e, ^a*ILL*, *Grenoble*, *France*. ^b*HMI*, *Berlin*, *Germany*. ^c *HASYLAB- DESY*, *Hamburg*, *Germany*. ^c*Université Montpellier II*, *Montpellier*, *France*. ^d*Université Paris XI*, *Orsay*, *France*. E-mail: bordallo@ill.fr

Amino acid construction consists of a carboxylic acid (-COOH) and an amino (-NH₂) functional group attached to the same tetrahedral carbon atom, the α -carbon. Every amino acid, with the exception of glycine, comes in two forms, a left-handed (L) and a right-handed (D) version, which are identical mirror images of each other. However, protein chains cannot be formed from a mixture of D and L.

We report on high resolution X-ray and neutron scattering diffraction as well as quasi-elastic neutron (QENS) studies on crystalline L- and D-alanine over a wide temperature range. Our aim is to verify the possibility predicted by the Nobel Laureate A. Salam, that a phase transition, related to a break of the as C α -H bond, occurs in alanine. While no change in the space group symmetry was observed, a negative thermal expansion, by discrete steps, along the caxis is observed till the melting point. Additional anomalies are also noticed in the a and b lattice constants at 170K. Moreover, the evolution of the mean-square displacement, obtained from the QENS, data shows a steadily increase on heating, but near 150K and again near 200K a deviation from the expected behavior is observed. The results suggest the excitation of new degrees of freedom, possibly due to a progressive conformational change of the NH³⁺ group. The ramifications of this study can be extremely interesting for the understanding of homochirality as well as a breakthrough in molecular mapping via non-traditional sources of information.

Keywords: amino acids, chirality, structure and properties